Course Outcome of the Courses of B.Tech. 5th Semester and Mapping of the

Course Outcome with Programme Outcome

			Ho	ours p	er	Credit	Ma	rks
Sl. No.	Sub-Code	Subject	V	Veek				
			L	Т	Р	С	CE	ESE
		Theory			1			I
1	ME181501	Applied Thermodynamics - I	3	0	2	4	30	70
2	ME181502	Machine Design - I	3	0	2	4	30	70
3	ME181503	Mechanisms and Dynamics of	3	0	2	4	30	70
		Machines						
4	ME181504	Heat Transfer - I	3	0	0	3	30	70
5	ME181505	Engineering Inspection and Metrology	3	0	0	3	30	70
6	HS181506	Engineering Economics	3	0	0	3	30	70
Practica	1							
1	ME181514	Heat Transfer – I Lab	0	0	2	1	15	35
2	ME181515	Engineering Inspection and Metrology	0	0	2	1	15	35
		Lab						
3	SI181521	Internship-II (SAI-Academia)	0	0	0	1	-	100
TOTAL		<u> </u>	18	0	10	24	210	590
Total Co	ontact Hours	per week: 28	1		1			
Total Cr	redits: 24							

APPLIED THERMODYNAMICS-I [ME181501]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Evaluate the performance of steam power cycle and select suitable modified methods to improve the efficiency of power cycle.
CO2	Explain various components of a steam generating plant and; estimate the draft and chimney height.
CO3	Apply the various thermodynamic laws and properties of steam to evaluate the performance of boiler, nozzle, turbine and condensers.
CO4	Explain the concepts of Availability and Irreversibility under various thermodynamic systems.

Mapping of COs with Pos

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	1	1	1	-	1
CO2	3	1	-	-	-	-	-	1	1	1	-	1
CO3	3	2	-	-	-	-	-	1	1	1	-	1
CO4	1	-	-	-	-	-	-	1	1	1	-	1

MACHINE DESIGN – I [ME181502]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Describe the design process, material selection, different modes and theories of failure;
COI	and calculate stresses and stress concentration under variable loading conditions.
CO2	Design bolted, rivetted and welded joints for various engineering applications.
CO3	Design solid and hollow shafts for various loading conditions; and cotter and knuckle
005	joint for alternating / tensile loads.
CO4	Describe rigid and flexible couplings and design Rigid Couplings.
CO5	Design Belt, Rope and Chain Drive.

Department of Mechanical Engineering, Jorhat Engineering College, COs and Mapping of Cos with POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	1	1	1	-	1
CO2	1	2	3	-	-	-	-	1	1	1	-	1
CO3	1	2	3	-	-	-	-	1	1	1	-	1
CO4	1	2	3	-	-	-	-	1	1	1	-	1
CO5	1	2	3	-	-	-	-	1	1	1	-	1

Mapping of COs with Pos

MECHANISMS AND DYNAMICS OF MACHINES [ME181503]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Illustrate Kinematic analysis of plane motion graphically and analytically and draw velocity and acceleration diagram.
CO2	Synthesize mechanisms to generate the desired motions by combination of different machine elements using analytical and graphical approaches.
CO3	Describe different types of mechanism used in engineering applications and their working principles.
CO4	Estimate Gyroscopic action in certain machine elements using principle of gyroscope.
CO5	Analyze balancing of rotating and reciprocating masses, single and multi-cylinder engines.

Mapping of COs with Pos

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	1	1	1	_	1
CO2	2	1	1	-	-	-	-	1	1	1	_	1
CO3	3	2	1	-	-	-	-	1	1	1	-	1
CO4	2	2	1	1	-	-	-	1	1	1	-	1
CO5	3	1	2	1	-	-	-	1	1	1	-	1

HEAT TRANSFER-1 [ME181504]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Explain the basic principles and mode of heat transfer.
CO2	Analyse steady state heat conduction for temperature distribution and rate of heat transfer for different geometries
CO3	Analyse unsteady state heat conduction in solids.
CO4	Solve problems involving view factors and radiative exchange between surfaces.
CO5	Define various terms related to diffusional heat transfer and solve problems for mass diffusion coefficient.

Mapping of COs with Pos

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	1	1	1	-	1
CO2	2	3	-	-	-	-	-	1	1	1	-	1
CO3	2	3	-	-	-	-	-	1	1	1	-	1
CO4	3	2	-	-	-	-	-	1	1	1	-	1
CO5	3	2	-	-	-	-	-	1	1	1	-	1

ENGINEERING INSPECTION AND METROLOGY [ME181505]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Describe precision and accuracy; and apply the knowledge of inspection and errors in measurement for decision making in manufacturing industry.
CO2	Describe tool room measuring instruments for different applications and design appropriate control charts for statistical process control.
CO3	Develop analytical and experimental techniques for precise measurement of thread and gear parameters.
CO4	Apply necessary standards for obtaining desired fit and design appropriate limit gauges.
CO5	Estimate texture of machined surface by stylus equipment and optical interferometry.

Department of Mechanical Engineering, Jorhat Engineering College, COs and Mapping of Cos with POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	1	-	1	1	1	-	1
CO2	1	2	3	1	_	-	_	1	1	1	_	1
CO3	1	2	3	-	-	-	-	1	1	1	-	1
CO4	3	2	3	-	_	-	_	1	1	1	_	1
CO5	1	3	-	1	-	-	-	1	1	1	-	1

Mapping of COs with POs

ENGINEERING INSPECTION AND METROLOGY LAB [ME181515]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Select proper instruments for dimensional measurement according to level of precision (1 micron).
CO2	Utilize Slip gauge for calibration of instrument during precision measurement.
CO3	Measure thread profile using Profile Projector.
CO4	To estimate precisely surface roughness of machined surface texture.

Mapping of COs with Pos

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	_	_	_	_	_	1	2	2	_	1
CO2	2	2	_	_	_	_	_	1	2	2	_	1
CO3	2	1	_	_	_	_	_	1	2	2	_	1
CO4	2	1	I	I	Ì	I		1	2	2		1

HEAT TRANSFER – I LAB [ME181514]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Estimate physical properties like thermal conductivity of different liquids and solids
	and compare its variation.
CO2	Apply Fourier's law to validate the theoretical over all heat transfer coefficient
CO3	Conduct experimental research in radiation heat transfer and determine various
	related parameters specifically Stefan-Boltzmann constant and Emissivity of solid
	surface.

Mapping of COs with Pos

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	1	-	-	-	1	1	1	-	1
CO2	2	2	-	1	-	-	-	1	1	1	-	1
CO3	2	2	-	1	-	-	-	1	1	1	-	1

INTERNSHIP-II (SAI-ACADEMIC) [SI181521]

Course Outcome (COs): At the completion of the course, the student will be able to:

CO1	Communicate effectively through report preparation and presentation.
CO2	Apply engineering knowledge, modern tools and techniques for system investigation and/or research method for system development.
CO3	Develop interpersonal and team skill.

Mapping of COs with Pos

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	1			1	2	3	_	2
CO2	3	2	1	1	1			1	2	3	_	2
CO3	3	2	1	1	1	_	_	1	2	3	-	2