Course Outcome of the Courses of B.Tech. 6rd Semester and Mapping of the Course Outcome with Programme Outcome

Sl.		Subject	Hours per			Credit	M	arks		
No.	Sub-Code		Week							
			L	Т	Р	С	CE	ESE		
		Theory	1	1	1	•				
1	ME181601	Machine Design-II	3	0	2	4	30	70		
2	ME181602	Fluid Mechanics-II	3	0	0	3	30	70		
3	ME181603	Mechanical Measurements and Instrumentation	3	0	0	3	30	70		
4	ME181604	Workshop Theory and Practice-II	3	0	2	4	30	70		
5	ME181605	Heat Transfer-II	3	0	0	3	30	70		
6	HS181606	Accountancy	2	0	0	2	30	70		
Practic	al	•								
1	ME181612	Fluid Mechanics-II Lab	0	0	2	1	15	35		
2	ME181613	Mechanical Measurements and Instrumentation Lab	0	0	2	1	15	35		
3	ME181615	Heat Transfer-II Lab	0	0	2	1	15	35		
Total			17	0	10	22	225	525		
Total C	Contact Hours	s per week: 27								
Total C	Total Credits: 22									

N.B. 4-6 weeks Mandatory Industry Internship need to be done in the 6th semester break and thereport is to be submitted and evaluated in 7th semester

MACHINE DESIGN-II [ME181601]

Course Outcome (COs): At the end of the course, the student will be able to

CO1	Identify the modes of fatigue failure in materials in cases of axial, torsional, flexural and combined loading conditions with stress concentration criteria
CO2	Distinguish between cases of static and dynamic loading conditions to test the theories of failurein design of simple mechanical elements like plates, bars, beams and shafts
CO3	Design gears, springs by selecting and analyzing engineering materials and considering designcriterions of failure under static and dynamic loading conditions using design data hand book(s)
CO4	Utilize the principles of tribology to design sliding contact bearing and select antifriction- bearings under static and dynamic loading conditions using design data hand book(s)
CO5	Design and analyse brakes and clutches under the consideration of power transmission using design data hand book(s).

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	1	1	1	-	1
CO2	3	1	-	-	-	-	-	1	1	1	-	1
CO3	3	1	3	-	-	-	-	1	1	1	-	1
CO4	1	2	3	-	-	-	-	1	1	1	-	1
CO5	1	2	3	-	-	-	-	1	1	1	-	1

FLUID MECHANICS – II [ME181602]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	familiarize with behaviour of compressible gas flow and to understand the difference between subsonic and supersonic flow
CO3	Illustrate the effect of Mach number on wave pattern, and do analysis for Fanno flow, Rayleigh flow and isothermal flow
CO4	Determine integral thicknesses, wall shear stresses, and skin friction coefficient using the concepts of viscous boundary layers and the momentum integral
CO5	Justify the cause of boundary layer separation in viscous and turbulent flows, deduce velocity distribution, shear velocity, and intensity in turbulent flows and derive the governing equations for the respective flows
CO6	Solve turbulent fluid flow problems with the application of turbulent theories and boundary conditions, differentiate between hydraulically smooth and rough boundaries

Mapping of PO's with CO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	-	-	-	-	-	1	-	1	-	1
CO2	2	1	1	-	-	-	-	1	-	1	-	1
CO3	3	2	1	-	-	-	-	1	-	1	-	1
CO4	2	2	1	1	-	1	-	1	-	1	-	2
CO5	3	1	2	1	-	-	-	1	1	1	-	1

MECHANICAL MEASUREMENTS AND INSTRUMENTATION [ME181603]

Mechanical Measurement and Instrumentation (ME181603)

CO1: Understand the generalized methods and devices for mechanical measurements.

CO2: **Apply** the concept of static and dynamic characteristics to understand the behavior of different types of systems and their input-output relationship

CO3: Apply transducers and sensors for measuring mechanical parameters.

CO4: **Select** and apply measuring instruments for measurement of different mechanical parameters.

CO5: Explain different display devices and recorders

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	1	-	-	-	-	-	-	1	-	-
CO2	2	1	-	-	1	-	-	-	-	-	-	1	-	-
CO3	2	1	-	-	1	-	-	-	-	_	-	1	-	-
CO4	2	1	-	-	1	-	-	-	-	-	-	1	-	-
CO5	2	1	-	-	1	-	-	-	-	-	-	1	-	-

Course Outcomes (COs): At the end of the course, the students will be able to:

- CO1 Apply the principles of static and dynamic characteristics of the instruments for their calibration
 CO2 Apply transducers and sensors for measuring mechanical parameters
- CO2 Apply transducers and sensors for measuring mechanical parameters
- CO3 Apply modulation and demodulation for mechanical signals and different conversion techniques
- CO4 Apply the concept of measurement and identify the errors involved in the control systems
- CO5 Select and apply measuring instruments for industrial manufacturing systems

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	3	-	-	-	-	-	-	1	1	1	-	1
CO2	3	-	-	I	I	I	I	1	1	1	I	1
CO3	3	-	-	I	-	-	-	1	1	1	I	1
CO4	3	-	-	I	I	I	I	1	1	1	-	1
CO5	2	3	-	-	-	-	-	1	1	1	-	1

WORKSHOP THEORY AND PRACTICE-II [ME181604]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Explain suitable welding process for a given application under specific
	conditions, advantages and limitations of several welding and allied processes.
CO2	Estimate tool life and cutting forces for known process parameters in machining with
	single point cutting tool and explain the process parameters to improve tool life by
	reducing tool wear and cutting forces.
CO3	Distinguish between Jigs and Fixtures and select the appropriate work holding device
	for a given manufacturing operation
CO4	Explain additive manufacturing (AM) over conventional manufacturing for a given
	application and choose a suitable AM technology based on consideration of material and
	product design.
CO5	Describe the non-conventional machining processes and identify suitable technology for
	a given machining applications.
CO6	Construct simple butt joints using gas/ arc welding, single point cutting tool by grinding
	from square rod blank.

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	2	1	-	-	-	-	-	1	1	1	-	1
CO2	3	1	-	-	-	-	-	1	1	1	-	1
CO3	2	2	-	-	-	-	-	1	1	1	-	1
CO4	2	1	-	-	-	-	-	1	1	1	-	1
CO5	2	-	-	-	-	-	-	1	1	1	-	1
CO6	2	-	3	-	-	-	-	1	1	1	-	1

HEAT TRANSFER-II [ME181605]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Classify the various types of Convective heat transfer problems and discuss their
	applications
CO2	Apply dimensional analysis in convective heat and mass transfer to derive empirical
	equations
CO3	Compare different types of boundary layers formed in various flow problems and
	evaluate various parameters of hydrodynamic and thermal boundary layers
CO4	Design different types of heat exchangers by deducing sizing and thermal analysis
	methods and analyze two-phase flow problems
CO5	Evaluate the heat transfer rate in forced and free convection modes using corresponding
	empirical correlations

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	-	-	-	-	-	-	1
CO2	2	2	2	-	-	-	-	-	-	-	-	1
CO3	2	1	-									1
CO4	2	2	1	-	-	-	-	-	-	-	-	1
CO5	2	2	2	-	-	-	-	-	-	-	-	1
CO6	2	1	-	-	-	-	-	-	-	-	-	1

FLUID MECHANICS-II LAB (ME181612)

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Categorize different regimes in a pipe flow, visually and theoretically using Reynolds
	Apparatus and a second
CO2	Determine the coefficient of discharge, C_d of venturi meter and know the experimental
	techniques for fluid mechanics

Mapping of PO's with CO's

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	-	-	-	1	2	1	-	1
CO2	2	2	1	1	-	-	-	1	2	1	-	1

MECHANICAL MEASUREMENTS AND INSTRUMENTATION LAB [ME181613]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Explain the working principle of devices for mechanical measurements.
CO2	Formulate objective(s) and identify key factors in designing experiments for a given problem.
CO3	Apply the concepts of calibration, traceability, and uncertainty for accurate and reliable measurements.
CO4	Identify and estimate measurement errors and suggest suitable techniques to minimize them.
CO5	Analyse the results to draw valid conclusions.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	_	_	—	2	_	_	_	_	1	_	_
CO2	2	_		_	2	_	_	_	_	1	_	—
CO3	2	_	1	_	2	_		_	_	1	_	
CO4	2	_	1	—	—	—	_	_	_	1	_	_
CO5	2	1	1	—	—	—	_	_	—	1	_	_

HEAT TRANSFER-II LAB [ME181615]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Estimate convective heat transfer coefficient for forced and free convection and
	compare the values under steady state condition
CO2	Determine various stage of boiling and critical heat flux.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	3	-	-	-	-	-	1	1	1	-	1
CO2	2	3	-	-	-	-	-	1	1	1	-	1