Course Outcome of the Courses of B.Tech. 7th Semester and Mapping of the Course Outcome with Programme Outcome

Sl.			Hou	rs p	er	Credit	Ma	rks	
No.	Sub-Code	Subject	Wee	k					
			L	Т	Р	С	CE	ESE	
	1	Theory	1						
1	ME181701	Vibration of Mechanical Systems	Vibration of Mechanical Systems3003						
2	ME181702	Applied Thermodynamics - II	3	0	0	3	30	70	
3	ME181703	Industrial Engineering and	3	0	0	3	30	70	
		Management							
4	ME181PE1*	Program Elective -1	3	30	70				
5	ME1810E1*	Open Elective -1	3	0	0	3	30	70	
6	HS181704	Principles of Management	3	0	0	3	30	70	
	I	Practical						-	
1	ME181722	Project-1	0	0	8	4	50	50	
2	ME181723	Grand Viva Voce-I	0	0	0	1	0	50	
3	SI181721	Internship-III	0	0	0	2	0	200	
		(SAI - Industry)							
	1	TOTAL	18	0	8	25	230	720	
Tota	l Contact Hours	per week: 26					L		
Tota	Credit: 25								

1	ME181701	Vibration of Mechanical Systems
2	ME181702	Applied Thermodynamics - II
3	ME181703	Industrial Engineering and Management
4	ME181PE11	Hydraulic Machines
5	ME181PE13	Power Plant Technology
6	ME181PE15	Refrigeration
1	ME1810E11	Operation Research
2	ME1810E12	Renewable Energy Sources
3	ME1810E13	Solid Waste Management

VIBRATION OF MECHANICAL SYSTEMS [ME181701]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Construct free body diagram and formulate the equation of motion for free vibration of
	mechanical system under damped and undamped conditions.
CO2	Develop mathematical models of physical systems under forced vibration using Newton's
	laws of motion and principles of conservation of energy and solve.
CO3	Analyze results of seismic instruments to estimate vibration parameters.
CO4	Evaluate vibration parameters and noise for multi degrees of freedom system and
	estimate the critical speed of a shaft for whirling motion.

Mapping of COs with POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-	-	-	-	-	-	-	1
CO2	2	-	-	-	-	-	-	-	-	-	-	1
CO3	3	1	-	-	-	-	-	-	-	-	-	1
CO4	3	1	-	-	-	-	-	-	1	-	-	1

APPLIED THERMODYNAMICS - II [ME181702]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Evaluate Indicated power, FAD, Isothermal efficiency of air compressors
CO2	Explain the methods of improving the thermal efficiency of the gas turbine and estimate the thermal efficiency, specific power consumption, power developed by a gas turbine unit for given an operating condition and. [M2]
CO3	Explain the effect different operating parameter on the VCR and estimate the refrigerating effect, capacity, COP, power required for operating a refrigerating unit for given operating conditions.
CO4	Explain Air Breathing Engines (Ramjet, Turbojet (standard): Fan exhausted turbojet & Fan mixed turbojet and Turbo prop.) and Non-Air Breathing Engines (Solid Rocket Motors and Liquid Rocket Engines).

Mapping	of	COs	with	POs
---------	----	-----	------	-----

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	1	1	1	-	1
CO2	2	2	-	-	-	-	-	1	1	1	-	1
CO3	3	1	-	-	-	-	-	1	1	1	-	1
CO4	2	-	-	-	-	-	-	1	1	1	-	1
CO5	3	1	-	-	-	-	-	1	1	1	-	1

INDUSTRIAL ENGINEERING AND MANAGEMENT [ME181703]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Explain the concept of Organization, functions of Management and Organization types.
CO2	Analyse the problems related to Plant Location and Layout for optimal solutions.
CO3	Utilize the concept of Project Management to Solve various problems related to time optimization of Projects.
CO4	Explain the concepts of Work Study, Product Design; Solve PPC and basic Inventory Management problems.
CO5	Explain the concepts of Maintenance Management & TQM; Solve problems of Quality Control in Organizations.

Mapping of COs with POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	-	-		-	-	1	1	-	1
CO2	3	2	-	-	-	1	-	1	1	1	-	1
CO3	3	2	-	-	-	1	1	1	1	1	-	1
CO4	3	1	-	-	-	1	1	1	1	1	-	1
CO5	2	2	-	-	-	1	1	1	1	1	-	1

HYDRAULIC MACHINES [ME181PE11]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Develop the Euler equation of hydraulic machines and distinguish different classes of
	turbines. [M1]
CO2	Explain the working principle and analyse performance of hydraulic turbines. [M2]
CO3	Explain the concept of cavitation and analyse the performance of draft tube. [M2]
CO4	Classify different classes of pumps, their construction, features and analyse their performance. [M3]
CO5	Utilize the knowledge of various hydraulic machines for industrial applications. [M4]

Mapping of PO's with CO's

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	-	-	-	-	1	1	1	-	1
CO2	3	2	-	-	-	-	1	1	1	1	-	1
CO3	3	2	-	-	-	-	-	1	1	1	-	1
CO4	3	2	-	-	-	-	-	1	1	1	-	1
CO5	3	-					-	1	1	1		1

POWER PLANT TECHNOLOGY [ME1818PE13]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Identify the different components of power plants and understand local and global energy scenario.
CO2	Evaluate the performance of steam power plant and its different components.
CO3	Compare the working and performance of diesel and gas turbine power plant.
CO4	Differentiate the working and relative merits between different non-conventional power plants.
CO5	Analyse the economics of power generation in different power plant.

Mapping of PO's with CO's

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	-	-	-	1	2	1	-	1	-	1
CO2	3	3	1	2	-	1	1	1	-	1	-	1
CO3	2	1	-	-	-	-	-	1	1	1	-	1
CO4	2	3	-	-	-	1	2	1	-	1	-	1
CO5	3	2	-	2		1	1	1	1	1	-	1

REFRIGERATION [ME181PE15]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Illustrate and solve problems on air refrigeration systems for aircraft
CO2	Solve problems on and analyse the vapour compression refrigeration cycle.
CO3	Explain vapour absorption and non-conventional refrigeration system
CO4	Explain various refrigeration equipment used in VCRS and VARS.
CO5	Select environmentally friendly refrigerants and illustrate various refrigeration applications.

Mapping of PO's with CO's

COS	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	-	-	-	-	-	1	-	1	-	-
CO2	3	3	3	-	2	-	-	1	-	1	-	2
CO3	3	-	-	-	-	-	-	1	-	1	-	2
CO4	3	-	-	-	-	-	-	1	-	1	-	2
CO5	2	-	-	-	-	2	2	1	-	1	-	2

OPERATION RESEARCH [ME1810E11]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Develop linear programming models for simple real-life problems and solve them to find
	the best feasible solutions.
CO2	Solve transportation and assignment problems to find the best feasible solution.
CO3	Solve single and multi-variate linear and non-linear problems using classical methods of
	optimization techniques.
CO4	Solve classical inventory problems involving demands of deterministic nature.

CO5	Develop a mathematical model for simulation and find the future outcomes of simple real-
005	life problems using Monte-Carlo Simulation.

Mapping of PO's with CO's

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2		_	3			_	1	1	_	1
CO2	2	2	1	_	1	_	_	_	1	1	_	1
CO3	3	—	-	-	—	-	-	-	1	1	_	1
CO4	3	—	_	-	—	_	_	-	1	1	_	1
CO5	2	2	_	_	2	_	_	_	1	1	_	1

Renewable Energy Sources [ME1810E12]

Course Outcomes (COs): At the end of the course, the students will be able to:

CO1	Explain the processes and mechanism of conversion of biomass into gaseous fuels
CO2	Explain different solar thermal energy harvesting devices and design solar air and water heaters
CO3	Describe Special characteristics, turbine parameters, optimum operation, electric power generation from wind/tidal energy; Types of wind mills, and elementary design principle
CO4	Describe geothermal power plant, Principle of ocean thermal energyconversion Power plant based on OTEC, working principle of nuclear powerplant and its different components
CO5	Explain the direct energy conversion methods; Thermo-ions, MHD, electrochemical devices, fuel cells etc., integrated energy packages using solar, biomass, and wind.

Mapping of PO's with CO's

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	_		-	1	1	1	1	1	_	1
CO2	1	2	2	-	-	1	1	1	1	1	_	1
CO3	2	_	_	_	_	1	1	1	1	1	_	1
CO4	2	_	_	_	_	1	1	1	1	1	_	1
CO5	2	-	-	-	-	1	1	1	1	1		1

SOLID WASTE MANAGEMENT [ME1810E13]

Course Outcomes (COs): At the completion of the course the student will be able to:

	Explain the 4-R Principle in waste minimization, Concept of Zero Waste, Types and Sources
CO1	of Solid Waste, Characteristics & Quantification technique of Solid Waste, Legislation &
	Regulations.
CO2	Explain Collection Systems and different stages of Processing of Solid Waste.
CO3	Explain different techniques of solid waste composting, combustion and energy recovery
05	techniques from solid waste.
CO4	Explain the environmental problems relating to solid waste management.
CO5	Explain the need of implementing scientific solid waste management in modern society.

Mapping of COs with POs:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	—	—	-	_	-	2	3	1	1	1	_	1
CO2	—	-	—	—	_	1	3	1	1	1	—	1
CO3	_	-	-	_	_	1	3	1	1	1	_	1
CO4	—	—	-	_	-	2	3	1	1	1	_	1
CO5	—	_				2	3	1	1	1		1

PROJECT-I [ME181722]

Course Outcomes: Upon completion of the project, students shall be able to:

CO1	Apply engineering knowledge, and modern engineering and IT tools and techniques to investigate complex system, analyze data to produce useful information and draw conclusion and also develop system or system components.
CO2	Communicate results, concepts, analyses and ideas in written and oral form through report preparation, project presentation and paper publication
CO3	Develop the attributes of the capability of working in team, project management through information, knowledge and skill sharing to achieve the goal of the project assigned.

Mapping of COs with POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	1	1	1	2	-	1	2	3
CO2	3	3	3	2	1	1	1	2	3	1	2	3
CO3	-	-	-	-	-	-	-	3	3	-	3	3

GRAND VIVA VOCE-I [ME181723]

Course Outcomes: Upon completion of the course, students shall be able to:

CO1	Develop self-learning skills							
CO2	Demonstrate domain knowledge and skills in interview							
CO3	Communicate effectively in personnel interview							

Mapping of COs with POs

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	1	-	-	-	3	-	3
CO2	2	-	-	-	-	1	-	-	-	3	-	3
CO3	2	-	-	-	-	1	-	-	-	3	-	3

INTERNSHIP-III (SAI - INDUSTRY) [SI181721]

Course Outcomes: At the end of the internship, the students will be able to

CO1	Communicate effectively through report preparation and presentation.
CO2	Describe the use of advanced tools and techniques available in industry and also industrial safety measures practiced in industry
CO3	Develop interpersonal and team skills, confidence of working in industry, awareness about the working environment and self-learning capability

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	-	-	-	-	1	2	2	3	-	2
CO2	2	-	-	-	-	-	1	2	2	3	-	2
CO3	2	-	-	-	-	-	1	2	2	3	-	2