
Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Distributed Computing System
Lab Manual

Subject Code: CSE
Class: VI Semester(CSE)

Prepared By Mr. Biswajit Sarma
Assistant Professor

Department of Computer Science & Engineering
 JORHAT ENGINEERING COLLEGE

JORHAT : 785007, ASSAM

1

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Vision of the Department

Mission of the Department

OBJECTIVE:This lab complements the Distributed Computing System course.
Students will gain practical experience with basic techniques in the design and

development of Distributed Systems and understanding solutions of the
fundamental problems in distributed systems like mutual exclusion, deadlock

detection, termination detection, RPC, RMI, OPENMP, MPI and CORBA.

Program Outcomes

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for the public health and safety, and the cultural, societal, and environmental
considerations.

2

To become a prominent department of Computer Science and Engineering for producing quality
human resources to meet the needs of the industry and society

1: To impart quality education through well-designed curriculum and academic facilities to meet the
computing needs of the industry and society
2: To inculcate the spirit of creativity, team work, innovation, entrepreneurship and professional
ethics among the students
 3: To facilitate effective interactions to foster networking with alumni, industries, institutions of
learning and research and other stake-holders
4: To promote research and continuous learning in the field of Computer Science and Engineering

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

PO4 Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

PO5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal,health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

PO9 Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of the engineering
and management principles and apply these to one’s own work, as a member and leader in a
team, to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

PSO1 Gain ability to employ modern computer languages, environments and platforms in creating
innovative career paths

PSO2 Achieve an ability to implement, test and maintain computer based system that fulfils the
desired needs

3

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Distributed Computing System Lab Syllabus
(Practical Hours: 06, Credits: 00)

Implement the following programs using C Language in Linux Plateform.

Exp.
No.

List of Experiments Page
No.

1. To Simulate the functioning of Lamport’s Logical clock in ‘c’. 5-6

2. To Simulate the functioning of Lamport’s Vector clock in ‘c’. 7

3. To Simulate the Distributed Mutual exclusion in ‘c’. 8

4. To Simulate the Non Token/ Token based algorithm in Distributed system. 9

5. To Simulate the Distributed Deadlock Detection algorithm-Edge chasing. 10

6. To Implement ‘RPC’ mechanism for accessing methods of remote systems. 11-13

7. To Implement ‘Java RMI’ mechanism for accessing methods of remote
systems.

14-16

8. To implement CORBA mechanism by using C++ program at one end and
Java Program on the other.

17-35

9. Experiment with the application programming interface OpenMP which
supports multi-platform shared-memory and multiprocessing programming in
C

36-68

10. Experiment with Message Passing Interface Standard (MPI). 69-91

4

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:1
AIM: To Simulate the functioning of Lamport’s Logical clock in ‘c’.

Prerequisites: Global Clock Concept, C programming

Outcome: Program will exhibit the simulation of Lamport’ logical clock behaviour based on two rules.

Description: The "time" concept in distributed systems -- used to order events in a distributed system.

Assumption:

o The execution of a process is characterized by a sequence of events. An event can be the execution

of one instruction or of one procedure.
O Sending a message is one event, receiving a message is one event.
O The events in a distributed system are not total chaos. Under some conditions, it is possible to
ascertain the order of the events. Lamport's logical clocks try to catch this.

Lamport's `happened before'' relation

The ``happened before'' relation (®) is defined as follows:

o A ® B if A and B are within the same process (same sequential thread of control) and A occurred

before B.

o A ® B if A is the event of sending a message M in one process and B is the event of receiving M by

another process.

o if A ® B and B ® C then A ® C.

Event A causally affects event B iff A ® B.
Distinct events A and B are concurrent (A | | B) if we do not have A ® B or B ® A.

Algorithm:
Ci is the local clock for process Pi

o if a and b are two successive events in Pi, then Ci(b) = Ci(a) + d1, where d1 > 0

o if a is the sending of message m by Pi, then m is assigned timestamp tm = Ci(a)

o if b is the receipt of m by Pj, then Cj(b) = max{Cj(b), tm + d2}, where d2 > 0

5

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Expected Outcome:
Enter the no. of physical clocks: 2
No. of nodes for physical clock 1: 2
Enter the name of process: a
Enter the name of process: b
No. of nodes for physical clock 2: 2
Enter the name of process: c
Enter the name of process: d
Press a key for watching timestamp of physical clocks
Physical Clock 1
Process a has P.T.: 6
Process b has P.T.: 7
Physical Clock 2
Process c has P.T.: 2
Process d has P.T.: 3
Press a key for watching timestamp of logical clocks
Logical Clock Timestamp for process a: 6
Logical Clock Timestamp for process b: 13
Logical Clock Timestamp for process c: 18
Logical Clock Timestamp for process d: 23

6

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:2
AIM: To Simulate the functioning of Lamport’s Vector clock in ‘c’.

Prerequisites: Vector clock functioning, C programming

Outcome: Causal ordering for transitive processes

Description: Vector Clocks are used in distributed systems to determine whether pairs of events are
causally related. Using Vector Clocks, timestamps are generated for each event in the system, and their
causal relationship is determined by comparing those timestamps.
The timestamp for an event is an n-tuple of integers, where n is the number of processes.
Each process assigns a timestamp to each event. The timestamp is composed of that process logical
time and the last known time of every other process.

Algorithm:
ta < tb If and only if they meet two conditions:
1.They are not equal timestamps (there exists i, ta[i] != tb[i]) and
2.each ta[i] is less than or equal to tb[i] (for all i, ta[i] <= tb[i])

Expected Output:
Process Vector
p1[13497767650101114]
p2[13497767650101114]
p3[13497767650101120]

7

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:3
AIM: To Simulate the Distributed Mutual exclusion in ‘c’.

Prerequisites: Mutual exclusion concepts, C programming

Description: Concurrent access of processes to a shared resource or data is executed in mutually
exclusive manner. Only one process is allowed to execute the critical section (CS) at any given time.
In a distributed system, shared variables (semaphores) or a local kernel cannot be used to implement
mutual exclusion. Message passing is the sole means for implementing distributed mutual exclusion.

Algorithm:
Process 1: Request resource:
Resource Allocated No more requests process for this resource.
Process2: Request Resource Denied
Process 1: Exit Resource:
Process2: Request Resource Allocated
Expected Output:
Press a key (except q) to enter a process into critical section. Press q at any time to exit.
Process 0 entered critical section.
Error: Another process is currently executing critical section. Please wait till its execution is
over.
Process 0 exits critical section.
Process 1 entered critical section.
Process 1 exits critical section.
Process 2 entered critical section.
Error: Another process is currently executing critical section. Please wait till its execution is
over.
Process 2 exits critical section.

8

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:4
AIM: To Simulate the Non Token/ Token based algorithm in Distributed system-Lamport’s.

Prerequisites: Understanding of Non-Token based algorithm, Java programming

Description: Requests for CS are executed in the increasing order of timestamps and time is
determined by logical clocks. Every site Si keeps a queue, request queuei , which contains mutual
exclusion requests ordered by their timestamps. This algorithm requires communication channels to
deliver messages the FIFO order.

Algorithm:
Requesting the critical section:
When a site Si wants to enter the CS,
it broadcasts a REQUEST(tsi , i) message to all other sites and places the request on request queuei .
((tsi , i) denotes the timestamp of the request.)
When a site Sj receives the REQUEST(tsi , i) message from site Si ,
places site Si ’s request on request queuej and it returns a timestamped REPLY message to Si .
Executing the critical section: Site Si enters the CS when the following two conditions hold:
L1: Si has received a message with timestamp larger than (tsi , i) from all other sites.
L2: Si ’s request is at the top of request queuei .

Expected Output: The process which would have next to on ring would access resource.

9

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:5
AIM: To Simulate the Distributed Deadlock Detection algorithm-Edge chasing.

Prerequisites: Deadlock knowledge, C compiler,

Description & Algorithm:
Whenever a process A is blocked for some resource, a probe message is sent to all
processes A may depend on. The probe message contains the process id of A along with the
path that the message has followed through the distributed system. If a blocked process receives
the probe it will update the path information and forward the probe to all the processes it depends
on. Non-blocked processes may discard the probe.
If eventually the probe returns to process A, there is a circular waiting loop of blocked processes,
and a deadlock is detected. Efficiently detecting such cycles in the “wait-for graph” of blocked
processes is an important implementation problem.

Expected Output: The status of the system as deadlocked or not.

10

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:6
AIM: To Implement ‘RPC’ mechanism for accessing methods of remote systems.

11

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

12

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Example of rpcgen file

program DATEPROG { /* remote program name (not used)*/
version DATEVERS { /* declaration of program version number*/

long BINDATE(int) = 1; /*prototype of the function, procedure number = 1 */
} = 1; /* definition of program version =1*/

} = 0x3012225; /* remote program number (must be unique)*/

How to compile:
$rpcgen -a test.x // -a generate all files, including samples

Modify the test_client.c and test_server.c according to your requirement. Use the Makefile to build the
executables. For Makfile use the following command

$make -f Makefile

Assignment: Implement Multiplication of two numbers in Remote Procedure Call.

13

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:7
AIM: To Implement ‘Java RMI’ mechanism for accessing methods of remote systems.

Prerequisites: Knowledge of remoting, Java.

Description: The Java Remote Method Invocation (Java RMI) is a Java API that performs remote
method invocation, the object-oriented equivalent of remote procedure calls (RPC), with support for
direct transfer of serialized Java classes and distributed garbage collection.

1. The original implementation depends on Java Virtual Machine (JVM) class representation
mechanisms and it thus only supports making calls from one JVM to another. The protocol underlying
this Java-only implementation is known as Java Remote Method Protocol (JRMP).
2. In order to support code running in a non-JVM context, a CORBA version was later developed.

Usage of the term RMI may denote solely the programming interface or may signify both the API
and JRMP, IIOP, or another implementation, whereas the term RMI-IIOP (read: RMI over IIOP)
specifically denotes the RMI interface delegating most of the functionality to the supporting CORBA
implementation.
The basic idea of Java RMI, the distributed garbage-collection (DGC) protocol, and much of the
architecture underlying the original Sun implementation, come from the 'network objects' feature of
Modula-3.

Sample code:
Code:
RMI SERVER:
import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
import java.rmi.registry.*;
public class RmiServer extends UnicastRemoteObject implements
RmiServerIntf
{

public static final String MESSAGE = "Hello World";
public RmiServer() throws RemoteException

14

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

{
super(0);
// required to avoid the 'rmic' step, see below

}
public String getMessage()
{

return MESSAGE;
}
public static void main(String args[]) throws Exception
{

System.out.println("RMI server started");
try
{ //special exception handler for registry creation

LocateRegistry.createRegistry(1099);
System.out.println("java RMI registry created.");

}
 catch (RemoteException e)
{

//do nothing, error means registry already exists
System.out.println("java RMI registry already exists.");

}
//Instantiate RmiServer
RmiServer obj = new RmiServer();
// Bind this object instance to the name "RmiServer"
Naming.rebind("//localhost/RmiServer", obj);
System.out.println("PeerServer bound in registry");

}
}

INTERFACE
import java.rmi.Remote;
import java.rmi.RemoteException;
public interface RmiServerIntf extends Remote
{

15

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

public String getMessage() throws RemoteException;
}

CLIENT
import java.rmi.Naming;
public class RmiClient
{

public static void main(String args[]) throws Exception
{

RmiServerIntf obj =(RmiServerIntf)Naming.lookup("//localhost/RmiServer");
System.out.println(obj.getMessage());

}
}

Expected Output: Client can access the method of given by server using interface.

Assignment: Implement Multiplication of two numbers in JAVA RMI.

16

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:8
AIM: To implement CORBA mechanism by using C++ program at one end
and Java Program on the other.

The Common Object Request Broker Architecture (CORBA) as defined by the OMG spec, allows
clients to invoke operations on distributed objects (as defined by their IDL) without concern for their
location, the programming language of the remote service, its OS, hardware platform (32 bit or 64 bit
word size) or communications protocols (TCP/IP, IPX, FDDI, ATM,...).

CORBA is a support framework of applications, libraries and services for making distributed procedure
calls. A program on computer "C" (CORBA client) calls a function which is computed and processed
on computer node "S" (CORBA server) and passes to it function arguments. The function/method
passes arguments and returns values as with any other C/C++ call except that it may be distributed
across the network so that portions of the program may be executed on a remote machine.

CORBA's strength is that it allows platform and programming language interoperability. The interface
between the client and server is defined by the CORBA IDL language which can be processed to
produce code to support a variety of languages and platforms. The CORBA communication protocol,
the language mappings and object model are standardized to allow this general inter-operability.

17

http://www.omg.org/

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 1. Application calls Function_1a()

2. CORBA name service locates Function_1a() on "server 1"
3. Application requests a call to Function_1a() on "server 1"
4. Execution of Function_1a() on "server 1" returns a function return value and returns an
argument list.

What is CORBA (Executive summary)

•ORB: Object Request Broker = manages remote access to objects

•CORBA: Common ORB Architecture = software bus for distributed objects.
CORBA specifies a system which provides interoperability between objects in a
heterogeneous, distributed environment and in a way transparent to the
programmer. Its design is based on OMG Object Model.

•CORBA provides a framework for distributed OO programming–remote objects
are (nearly) transparently accessible from the local program–uses the client-
server paradigm–platform and language independent.

•“an OO version of RPC”–but a framework rather than a technology .

18

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Data communication from client to server is accomplished through a well-
defined object-oriented interface. The Object Request Broker (ORB)
determines the location of the target object, sends a request to that object,
and returns any response back to the caller. Through this object-oriented
technology, developers can take advantage of features such as inheritance,
encapsulation, polymorphism, and runtime dynamic binding. These
features allow applications to be changed, modified and re-used with
minimal changes to the parent interface. The illustration below identifies
how a client sends a request to a server through the ORB:

19

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Interface Definition Language (IDL)
A cornerstone of the CORBA standards is the Interface Definition Language. IDL
is the OMG standard for defining language-neutral APIs and provides the
platform-independent delineation of the interfaces of distributed objects. The
ability of the CORBA environments to provide consistency between clients and
servers in heterogeneous environments begins with a standardized definition of
the data and operations constituting the client/server interface. This
standardization mechanism is the IDL, and is used by CORBA to describe the
interfaces of objects.

IDL defines the modules, interfaces and operations for the applications and is not considered a
programming language. The various programming languages, such as Ada, C++, C#, or Java, supply
the implementation of the interface via standardized IDL mappings.

Application Development Using ORBexpress
The basic steps for CORBA development can be seen in the illustration below. This illustration
provides an overview of how the IDL is translated to the corresponding language (in this example, C+
+), mapped to the source code, compiled, and then linked with the ORB library, resulting in the client
and server implementation.

20

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

The basic steps for CORBA development include:

 Create the IDL to Define the Application Interfaces
The IDL provides the operating system and programming language independent interfaces to all
services and components that are linked to the ORB. The IDL specifies a description of any services a
server component exposes to the client. The term "IDL Compiler" is often used, but the IDL is actually
translated into a programming language.

 Translate the IDL
An IDL translator typically generates two cooperative parts for the client and server implementation,
stub code and skeleton code. The stub code generated for the interface classes is associated with a
client application and provides the user with a well-defined Application Programming Interface (API).
In this example, the IDL is translated into C++.

 Compile the Interface Files
Once the IDL is translated into the appropriate language, C++ in this example, these interface files are
compiled and prepared for the object implementation.

 Complete the Implementation
If the implementation classes are incomplete, the spec and header files and complete bodies and
definitions need to be modified before passing through to be compiled. The output is a complete client/
server implementation.

 Compile the Implementation
Once the implementation class is complete, the client interfaces are ready to be used in the client
application and can be immediately incorporated into the client process. This client process is
responsible for obtaining an object reference to a specific object, allowing the client to make requests
to that object in the form of a method call on its generated API.

 Link the Application
Once all the object code from steps three and five have been compiled, the object implementation
classes need to be linked to the C++ linker. Once linked to the ORB library, in this example,
ORBexpress, two executable operations are created, one for the client and one for the server.

 Run the Client and Server
The development process is now complete and the client will now communicate with the server. The
server uses the object implementation classes allowing it to communicate with the objects created by
the client requests.

21

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

In its simplest form, the server must perform the following:

 Create the required objects.
 Notify the CORBA environment that it is ready to receive client requests.
 Process client requests by dispatching the appropriate servant.

Example:(I will use C++/JAVA for development of CORBA
application here)

Definition of the IDL for all remote methods. All distirbuted object have to
defined in this file.

example.idl

interface ExampleInterface
{
 string send_message(in string message);
};

1. We want to write in C++ and Java. That is why, you need the C++
compiler g++ and the Java JDK.
2. We need omniORB, omniidl and omniNames. Please install all this in
your laptop.

C++ (omniORB)

Files

 server.cpp server programm
 client.cpp client programm
 MyExampleInterface_impl implementation of the class for distributed objects
 MyExampleInterface_impl.h header for Example_impl.cpp

Interface Implementation

MyExampleInterface_impl.h

#ifndef __MY_EXAMPLE_INTERFACE_IMPL_H__
#define __MY_EXAMPLE_INTERFACE_IMPL_H__

#include "example.hh"

22

https://xennis.org/wiki/Java
https://xennis.org/wiki/C%2B%2B

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

class MyExampleInterface_impl : public POA_ExampleInterface
{
 public:
 virtual char * send_message(const char * message);
};

#endif // __MY_EXAMPLE_INTERFACE_IMPL_H__

MyExampleInterface_impl_impl.cpp

#include "MyExampleInterface_impl.h"
#include <iostream>

using namespace std;

char * MyExampleInterface_impl::send_message(const char * message)
{
 cout << "C++ (omniORB) server: " << message << endl;
 char * server = CORBA::string_alloc(42);
 strncpy(server, "Message from C++ (omniORB) server", 42);
 return server;
}

Server

Implementation of the Server

server.cpp

#include "MyExampleInterface_impl.h"
#include <iostream>
#include <CORBA.h>
#include <Naming.hh>

/** Server name, clients needs to know this name */
#define SERVER_NAME "MyServerName"

using namespace std;

int main(int argc, char ** argv)
{
 try {

 //---

 // Initialize CORBA ORB

23

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 //---

 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

 //---

 // Initialize POA: Get reference to root POA
 //
 // Servant must register with POA in order to be made available for
client
 // Get reference to the RootPOA.
 //---

 CORBA::Object_var poa_obj = orb-
>resolve_initial_references("RootPOA");
 PortableServer::POA_var poa =
PortableServer::POA::_narrow(poa_obj);
 PortableServer::POAManager_var manager = poa->the_POAManager();

 //---

 // Create service
 //---

 MyExampleInterface_impl * service = new MyExampleInterface_impl;

 try {
 //---

 // Bind object to name service as defined by directive
InitRef
 // and identifier "NameService" in config file omniORB.cfg.
 //---

 CORBA::Object_var ns_obj = orb-
>resolve_initial_references("NameService");
 if (!CORBA::is_nil(ns_obj)) {
 //---

 // Narrow this to the naming context
 //---

 CosNaming::NamingContext_ptr nc =
CosNaming::NamingContext::_narrow(ns_obj);

 //---

24

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 // Bind to CORBA name service. Same name to be
requested by client.
 //---

 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup(SERVER_NAME);
 name[0].kind = CORBA::string_dup("");
 nc->rebind(name, service->_this());

 //---

 // Intizialization ready, server runs
 //---

 cout << argv[0] << " C++ (omniORB) server '" <<
SERVER_NAME << "' is running .." << endl;
 }
 } catch (CosNaming::NamingContext::NotFound &) {
 cerr << "Caught CORBA exception: not found" << endl;
 } catch (CosNaming::NamingContext::InvalidName &) {
 cerr << "Caught CORBA exception: invalid name" << endl;
 } catch (CosNaming::NamingContext::CannotProceed &) {
 cerr << "Caught CORBA exception: cannot proceed" << endl;
 }

 //---

 // Activate the POA manager
 //---

 manager->activate();

 //---

 // Accept requests from clients
 //---

 orb->run();

 //---

 // Clean up
 //---

 delete service;

25

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 //---

 // Destroy ORB
 //---

 orb->destroy();

 } catch (CORBA::UNKNOWN) {
 cerr << "Caught CORBA exception: unknown exception" << endl;
 } catch (CORBA::SystemException &) {
 cerr << "Caught CORBA exception: system exception" << endl;
 }
}

Client

Implementation of the client

client.cpp

#include "example.hh"
#include <iostream>
#include <CORBA.h>
#include <Naming.hh>

/** Name is defined in the server.cpp */
#define SERVER_NAME "MyServerName"

using namespace std;

int main(int argc, char ** argv)
{
 try {
 //---

 // Initialize ORB object.
 //---

 CORBA::ORB_ptr orb = CORBA::ORB_init(argc, argv);

 //---

 // Resolve service
 //---

 ExampleInterface_ptr service_server = 0;

26

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 try {

 //---

 // Bind ORB object to name service object.
 // (Reference to Name service root context.)
 //---

 CORBA::Object_var ns_obj = orb-
>resolve_initial_references("NameService");

 if (!CORBA::is_nil(ns_obj)) {
 //---

 // Bind ORB object to name service object.
 // (Reference to Name service root context.)
 //---

 CosNaming::NamingContext_ptr nc =
CosNaming::NamingContext::_narrow(ns_obj);

 //---

 // The "name text" put forth by CORBA server in
name service.
 // This same name ("MyServerName") is used by the
CORBA server when
 // binding to the name server (CosNaming::Name).
 //---

 CosNaming::Name name;
 name.length(1);
 name[0].id = CORBA::string_dup(SERVER_NAME);
 name[0].kind = CORBA::string_dup("");

 //---

 // Resolve "name text" identifier to an object
reference.
 //---

 CORBA::Object_ptr obj = nc->resolve(name);

 if (!CORBA::is_nil(obj)) {
 service_server =
ExampleInterface::_narrow(obj);
 }

27

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 }
 } catch (CosNaming::NamingContext::NotFound &) {
 cerr << "Caught corba not found" << endl;
 } catch (CosNaming::NamingContext::InvalidName &) {
 cerr << "Caught corba invalid name" << endl;
 } catch (CosNaming::NamingContext::CannotProceed &) {
 cerr << "Caught corba cannot proceed" << endl;
 }

 //---

 // Do stuff
 //---

 if (!CORBA::is_nil(service_server)) {
 char * server = service_server->send_message("Message from
C++ (omniORB) client");
 cout << "response from Server: " << server << endl;
 CORBA::string_free(server);
 }

 //---

 // Destroy OBR
 //---

 orb->destroy();

 } catch (CORBA::UNKNOWN) {
 cerr << "Caught CORBA exception: unknown exception" << endl;
 }
}

Build

Generate files from the interface desccription example.idl

omniidl -bcxx example.idl

omniidl will create files

 example.hh
 exampleSK.cc

The easiest way to build and compile all files ist to use the cpp/Makefile[1]

28

https://xennis.org/wiki/CORBA#cite_note-konrad-1

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Maefile:

Makefile

OMNIORB_HOME=/usr
IDL=$(OMNIORB_HOME)/bin/omniidl
IDLFLAGS=-bcxx
INCLUDES=-I$(OMNIORB_HOME)/include -I$(OMNIORB_HOME)/include/
omniORB4
LIBS=-L$(OMNIORB_HOME)/lib -lomnithread -lomniORB4

.PHONY: all
all: server client

server: server.o MyExampleInterface_impl.o exampleSK.o
 $(CXX) -o $@ $^ $(LIBS)

server.o: server.cpp MyExampleInterface_impl.h

MyExampleInterface_impl.h: example.hh
client: client.o exampleSK.o
 $(CXX) -o $@ $^ $(LIBS)

MyExampleInterface_impl.o: MyExampleInterface_impl.cpp
MyExampleInterface_impl.h example.hh

exampleSK.o: exampleSK.cc example.hh

exampleSK.cc example.hh: $(IDL_FILE)
 $(IDL) $(IDLFLAGS) $<

.PHONY: clean
clean:
 find . -maxdepth 1 -type f -name "*.bak" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "*.o" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "*.stackdump" -exec rm -f {} \;

29

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 find . -maxdepth 1 -type f -name "*.exe" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "example.hh" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "exampleSK.cc" -exec rm -f {} \;

.cpp.o:
 $(CXX) $(CXXFLAGS) -o $@ -c $< $(INCLUDES)
.cc.o:
 $(CXX) $(CXXFLAGS) -o $@ -c $< $(INCLUDES)

Configuration:
As a superuser
1.include these lines in the file etc/omniORB.cfg

InitRef = NameService=corbaname::127.0.0.1:2809
InitRef = EventService=corbaloc::localhost:4433/omniEvents
supportBootstrapAgent = 1

2. service omniNames start

Run your Program:

./server -ORBInitRef EventService=corbaloc::localhost:4433/omniEvents

./client -ORBInitRef EventService=corbaloc::localhost:4433/omniEvents

For JAVA Implementation:

Files

 server.cpp server programm
 client.cpp client programm
 MyExampleInterface_impl.java class of the implementation for distributed objects

Interface Implementation

MyExampleInterface_impl.java

30

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

public class MyExampleInterface_impl extends ExampleInterfacePOA {

 @Override
 public String send_message(String message) {
 System.out.println("Java Server: " + message);
 return "Message from Java server";
 }
}

Server

server.java

import java.util.*;

import org.omg.CORBA.ORB;
import org.omg.CosNaming.NameComponent;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;
//import org.omg.PortableServer.POAManager;

public class server {

 /** Server name, clients needs to know this name */
 public static final String SERVER_NAME = "MyServerName";

 public static void main(String [] args) {

 try {

 // Create and initialize the CORBA ORB
 ORB orb = ORB.init(args, null);

 // Get reference to root POA and activate the POA Manager
 POA rootpoa =
POAHelper.narrow(orb.resolve_initial_references("RootPOA"));
 rootpoa.the_POAManager().activate();

 // create servant and register it with the ORB
 MyExampleInterface_impl service = new
MyExampleInterface_impl();

 // Get object reference from the servant
 org.omg.CORBA.Object ref =
rootpoa.servant_to_reference(service);

31

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 ExampleInterface href = ExampleInterfaceHelper.narrow(ref);

 // Get the root naming context
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 // Use NamingContextExt which is part of the Interoperable
 // Naming Service (INS) specification.
 NamingContextExt ncRef =
NamingContextExtHelper.narrow(objRef);

 // Bind the Object Reference in naming service
 NameComponent path[] = ncRef.to_name(SERVER_NAME);
 ncRef.rebind(path, href);

 System.out.println("Java server '" + SERVER_NAME + "'' is
running ...");

 // Wait for remote invocations from clients
 orb.run();

 // destroy
 orb.destroy();

 } catch (org.omg.CORBA.UNKNOWN exception) {
 exception.printStackTrace(System.out);
 } catch (org.omg.CORBA.SystemException exception) {
 exception.printStackTrace(System.out);
 } catch (Exception exception) {
 exception.printStackTrace(System.out);
 }
 }
}

Client

client.java

import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;

public class client {

 /** Name is defined in the server.cpp */
 public static final String SERVER_NAME = "MyServerName";

 public static void main(String [] args) {

32

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 try {

 // Create and initialize the CORBA ORB
 ORB orb = ORB.init(args, null);

 // Get the root naming context
 org.omg.CORBA.Object objRef =
orb.resolve_initial_references("NameService");
 // Use NamingContextExt instead of NamingContext. This is
 // Part of the Interoperable naming Service.
 NamingContextExt ncRef =
NamingContextExtHelper.narrow(objRef);

 // Resolve the Object Reference in Naming
 ExampleInterface service_server =
ExampleInterfaceHelper.narrow(ncRef.resolve_str(SERVER_NAME));

 // Use service
 System.out.println("Java client is running ...");
 String server = service_server.send_message("Message from
Java client");
 System.out.println("> Response from Server: " + server);

 // Destroy
 orb.destroy();

 } catch (org.omg.CORBA.ORBPackage.InvalidName exception) {
 exception.printStackTrace(System.out);
 } catch (org.omg.CosNaming.NamingContextPackage.NotFound exception)
{
 exception.printStackTrace(System.out);
 } catch (org.omg.CosNaming.NamingContextPackage.CannotProceed
exception) {
 exception.printStackTrace(System.out);
 } catch (org.omg.CosNaming.NamingContextPackage.InvalidName
exception) {
 exception.printStackTrace(System.out);
 } catch (org.omg.CORBA.COMM_FAILURE exception) {
 exception.printStackTrace(System.out);
 } catch (Exception exception) {
 exception.printStackTrace(System.out);
 }
 }
}

33

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Build

Use the IDL compiler for JAVA idjl Generate files from the interface description example.idl

idlj -fall example.idl

idlj creates the files

 ExampleInterface.java
 ExampleInterfaceHelper.java
 ExampleInterfaceHolder.java
 ExampleInterfaceOperations.java
 ExampleInterfacePOA.java
 _ExampleInterfaceStub.java

Just use the java/Makefile[1] to compile the code:

Makefile

IDL=$(JAVA_HOME)/bin/idlj
IDLFLAGS=-fall

JAVA=java
JAVAC=javac

IDL_FILE = ../example.idl

.PHONY: all
all: server.class client.class

server.class: \
 server.java \
 MyExampleInterface_impl.java \
 ExampleInterfacePOA.java \
 ExampleInterfaceOperations.java \
 ExampleInterfaceHelper.java \
 ExampleInterface.java \
 _ExampleInterfaceStub.java
 $(JAVAC) $^

client.class: \
 client.java \
 ExampleInterface.java \
 ExampleInterfaceOperations.java \

34

https://xennis.org/wiki/CORBA#cite_note-konrad-1

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 ExampleInterfaceHelper.java \
 _ExampleInterfaceStub.java
 $(JAVAC) $^

ExampleInterface.java ExampleInterfaceHelper.java ExampleInterfaceHolder.java
ExampleInterfaceOperations.java ExampleInterfacePOA.java
_ExampleInterfaceStub.java: $(IDL_FILE)
 $(IDL) $(IDLFLAGS) $<

.PHONY: clean
clean:
 find . -maxdepth 1 -type f -name "*.bak" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "*.class" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "ExampleInterface.java" -exec rm -f {} \;
 find . -maxdepth 1 -type f -name "ExampleInterfaceHelper.java" -exec rm -f
{} \;
 find . -maxdepth 1 -type f -name "ExampleInterfaceHolder.java" -exec rm -f
{} \;
 find . -maxdepth 1 -type f -name "ExampleInterfaceOperations.java" -exec rm
-f {} \;
 find . -maxdepth 1 -type f -name "ExampleInterfacePOA.java" -exec rm -f
{} \;
 find . -maxdepth 1 -type f -name "_ExampleInterfaceStub.java" -exec rm -f
{} \;

Execute

 Name Service: WIE OBEN

 Server

java server -ORBInitRef EventService=corbaloc::localhost:4433/omniEvents

 Client

java client -ORBInitRef EventService=corbaloc::localhost:4433/omniEvents

Experiment: To implement CORBA mechanism by using C++ program at
one end and Java Program on the other.

35

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:9
AIM: Experiment with the application programming interface OpenMP which supports multi-
platform shared-memory and multiprocessing programming in C.

OpenMP: An API for Writing Multithreaded Applications. A set of compiler directives and library
routines for parallel application programmers. Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++.

36

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Ex. – Your program takes 20 days to run
95% can be parallelized
5% cannot (serial)
What is the fastest this code can run?
• As many CPU’s as you want!
• As you consider parallel programming understanding the underlying architecture is important
• Performance is affected by hardware configuration

• Memory or CPU architecture
• Numbers of cores/processor
• Network speed and architecture

37

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

OPENMP
• What is it?

• Open Multi-Processing
• Completely independent from MPI
• Multi-threaded parallelism

• Standard since 1997
• Defined and endorsed by the major players

• Fortran, C, C++
• Requires compiler to support OpenMP

• Nearly all do
• For shared memory machines

• Limited by available memory
• Some compilers support GPUs.

• Preprocessor Directives
• Preprocessor directives tell the compiler what to do

• Always start with #
• You’ve already seen one:

#include <stdio.h>
• OpenMP directives tell the compiler to add machine code for parallel execution of the
 following block
#pragma omp parallel
• “Run this next set of instructions in parallel”

• Some OpenMP Subroutines
int omp_get_max_threads()
• Returns max possible (generally set by OMP_NUM_THREADS)
int omp_get_num_threads()
• Returns number of threads in current team\\
int omp_get_thread_num()
• Returns thread id of calling thread
• Between 0 and omp_get_num_threads-1

• Process vs. Thread
• MPI = Process, OpenMP = Thread
• Program starts with a single process
• Processes have their own (private) memory space

38

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

• A process can create one or more threads
• Threads created by a process share its memory space

• Read and write to same memory addresses
• Share same process ids and file descriptors

• Each thread has a unique instruction counter and stack pointer
• A thread can have private storage on the stack

39

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

• OMP_NUM_THREADS defines run time number of threads can be set in code as well using:
omp_set_num_threads()
• OpenMP may try to use all available cpus if not set (On cluster–Always set it!)

40

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Private Variables 1:#include <omp.h>
#include <stdio.h>
int main()
{

int i;
const int N = 1000;
int a = 50;
int b = 0;
#pragma omp parallel for default(shared)
for (i=0; i<N; i++)
{

b = a + i;
}
printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);

}

41

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Private Variables 2:
#include <omp.h>
#include <stdio.h>
int main()
{

int i;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) private(a) private(b)
for (i=0; i<1000; i++)
{

b = a + i;
}
printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);

}

Private Variables 3:#include <omp.h>
#include <stdio.h>
int main()
{

int i;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) private(a) lastprivate(b)
for (i=0; i<1000; i++)
{

b = a + i;
}

42

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);
}

Private Variables 4:
#include <omp.h>
#include <stdio.h>
int main()
{

int i;
int a = 50;
int b = 0;

#pragma omp parallel for default(none) private(i) firstprivate(a) lastprivate(b)
for (i=0; i<1000; i++)
{

b = a + i;
}
printf("a=%d b=%d (expected a=50 b=1049)\n", a, b);

}

OpenMP Constructs:
• Parallel region

• Thread creates team, and becomes master (id 0)
• All threads run code after
• Barrier at end of parallel section

#pragma omp parallel [clause ...]
if (scalar_expression)

43

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

private (list)
shared (list)
default (shared | none)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
num_threads (integer)

OMP Parallel Clauses 1:
#pragma omp parallel if (scalar_expression)

• Only execute in parallel if true
• Otherwise serial

#pragma omp parallel private (list)
• Data local to thread
• Values are not guaranteed to be defined on exit (even if defined before)
• No storage associated with original object

• Use firstprivate and/or lastprivate clause to override

OMP Parallel Clauses 2:
#pragma omp parallel firstprivate (list)

• Variables in list are private
• Initialized with the value the variable had before entering the construct

#pragma omp parallel for lastprivate (list)
• Only in for loops
• Variables in list are private
• The thread that executes the sequentially last iteration updates the value of the variables in the
list.

OMP Parallel Clause 3:
#pragma omp shared (list)

• Data is accessible by all threads in team
• All threads access same address space
• Improperly scoped variables are big source of OMP bugs

• Shared when should be private

44

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

• Race condition
#pragma omp default (shared | none)

• Tip: Safest is to use default(none) and declare by hand

Shared and Private Variables:
• Take home message:

• Be careful with the scope of your variables
• Results must be independent of thread count
• Test & debug thoroughly!

• Important note about compilers
• C (before C99) does not allow variables declared in for loop syntax

• Compiler will make loop variables private
• Still recommend explicit

#pragma omp parallel private(i)
for (i=0; i<1000; i++)
{

b = a + i;
}

45

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

46

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

47

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

OMP Reduction:
#pragma omp reduction (operator:variable)
• Avoids race condition
• Reduction variable must be shared
• Makes variable private, then performs operator at end of loop
• Operator cannot be overloaded (c++)

• One of: +, *, -, / (and &, ^, |, &&, ||)
• OpenMP 3.1: added min and max for c/c++

48

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Reduction Example:
#include <omp.h>
#include <stdio.h>
int main()
{

int i;
const int N = 1000;
int sum = 0;

#pragma omp parallel for private(i) reduction(+: sum)
for (i=0; i<N; i++)
{

sum += i;
}
printf("reduction sum=%d (expected %d)\n", sum, ((N-1)*N)/2);

}

49

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

50

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

51

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

52

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

53

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

54

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

SOME SIMPLE EXAMPLES:#include<stdio.h>
#include<omp.h>
void main()
{
 int ID = 0;
 printf(" hello(%d) ", ID);
 printf(" world(%d) \n", ID);
}

55

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

#include<stdio.h>
#include<omp.h>
int main()
{
 int id=0;
 #pragma omp parallel
 {
 printf("hello(%d)",id);
 printf("world(%d)",id);
 }
}

#include<stdio.h>
#include<omp.h>
int main()
{
 #pragma omp parallel
 {
 int id = omp_get_thread_num();
 printf("hello(%d)",id);
 printf("world(%d)",id);
 }
}

56

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

#include<stdio.h>
#include<omp.h>
void pooh(int, double[]);
int main()
{
 double A[1000];
 omp_set_num_threads(4);//Runtime function to request a certain number of threads
 #pragma omp parallel
 {
 int ID = omp_get_thread_num();//Runtime function returning a thread ID
 pooh(ID,A);
 }
}
void pooh(int x, double a[])
{
 printf("\n %d",x);
}

#include<stdio.h>
#include<omp.h>
void pooh(int, double[]);
int main()
{
 double A[1000];
 #pragma omp parallel num_threads(4)//clause to request a certain number of threads
 {
 int ID = omp_get_thread_num();//Runtime function returning a thread ID
 pooh(ID,A);

57

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 }
}
void pooh(int x, double a[])
{
 printf("\n %d",x);
}

58

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

#include<stdio.h>
#include<omp.h>
int big_callc1(int);
void big_callc2(int[],int);
int main()
{
 int id,A[10],i;
 #pragma omp parallel shared (A) private(id)
 {
 id=omp_get_thread_num();
 A[id]=big_callc1(id);
 #pragma omp for
 for(i=0;i<4;i++)//implicit barrier at the end of a for worksharing construct
 {
 big_callc2(A,i);
 }
 }
}

int big_callc1(int x)
{
 printf("\n in call1 %d",x);
 return x;
}

void big_callc2(int C[],int i)
{
 printf("\n in call2 %d",C[i]);
}

59

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Call1 and call2 both are mixing to synchronization we use #pragma omp barrier
#include<stdio.h>
#include<omp.h>
int big_callc1(int);
void big_callc2(int[],int);
int main()
{
 int id,A[10],i;
 #pragma omp parallel shared (A) private(id)
 {
 id=omp_get_thread_num();
 A[id]=big_callc1(id);

 #pragma omp barrier
 #pragma omp for
 for(i=0;i<4;i++)//implicit barrier at the end of a for worksharing construct
 {
 big_callc2(A,i);
 }
 }
}

int big_callc1(int x)
{
 printf("\n in call1 %d",x);

60

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 return x;
}

void big_callc2(int C[],int i)
{
 printf("\n in call2 %d",C[i]);
}

#pragma omp for nowait
#include<stdio.h>
#include<omp.h>
int big_callc1(int);
void big_callc2(int[],int);
void big_callc3(int[],int);
void big_callc4(int);
int main()
{
 int id,A[10],i;
 #pragma omp parallel shared (A) private(id)
 {
 id=omp_get_thread_num();
 A[id]=big_callc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i=0;i<6;i++)//implicit barrier at the end of a for worksharing construct

61

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 {
 big_callc2(A,i);
 }
 #pragma omp for nowait
 for(i=0;i<6;i++)//no implicit barrier due to nowait
 {
 big_callc3(A,i);
 }
 big_callc4(id);
 }
}

int big_callc1(int x)
{
 printf("\n in call1 %d",x);
 return x;
}

void big_callc2(int C[],int i)
{
 printf("\n in call2 %d",C[i]);
}

void big_callc3(int C[],int i)
{
 printf("\n in call3 %d",C[i]);
}

void big_callc4(int x)
{
 printf("\n in call4 %d",x);
}

62

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Sequence is broken call3 and call4 both are executing .

Master Construct:
The masterconstruct denotes a structured block that is only executed by the master thread. The other
threads just skip it (no synchronization is implied).
#include<stdio.h>
#include<omp.h>
int big_callc1(int);
void big_callc2(int[],int);
int main()
{
 int id,A[10],i;
 #pragma omp parallel shared (A) private(id)
 {
 id=omp_get_thread_num();

63

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 A[id]=big_callc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i=0;i<4;i++)//implicit barrier at the end of a for worksharing construct
 {
 big_callc2(A,i);
 }
 #pragma omp master
 {
 printf("\n I AM MASTER");
 }
 }
}

int big_callc1(int x)
{
 printf("\n in call1 %d",x);
 return x;
}

void big_callc2(int C[],int i)
{
 printf("\n in call2 %d",C[i]);
}

64

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Single worksharing Construct:
The single construct denotes a block of code that is executed by only one thread (not necessarily the
master thread). A barrier is implied at the end of the single block (can remove the barrier with a nowait
claus).

#include<stdio.h>
#include<omp.h>
int big_callc1(int);
void big_callc2(int[],int);
int main()
{
 int id,A[10],i;
 #pragma omp parallel shared (A) private(id)
 {
 #pragma omp single
 {
 printf("\n SINGLE");
 }
 id=omp_get_thread_num();
 A[id]=big_callc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i=0;i<4;i++)//implicit barrier at the end of a for worksharing construct
 {
 big_callc2(A,i);
 }
 }
}

int big_callc1(int x)
{
 printf("\n in call1 %d",x);
 return x;
}

65

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

void big_callc2(int C[],int i)
{
 printf("\n in call2 %d",C[i]);
}

Synchronization:
 The ordered region executes in the sequential order.
#include<stdio.h>
#include<omp.h>
int big_callc1(int);
int big_callc2(int[],int);
int main()
{
 int id,A[10],i,p=0;
 #pragma omp parallel private(A,id)
 {
 id=omp_get_thread_num();
 A[id]=big_callc1(id);
 #pragma omp barrier
 #pragma omp for ordered reduction(+:p)
 for(i=0;i<4;i++)//implicit barrier at the end of a for worksharing construct
 {
 #pragma ordered

66

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 {
 p+=big_callc2(A,id);
 printf("\n P=%d",p);
 }
 }
 }
}

int big_callc1(int x)
{
 printf("\n in call1 %d",x);
 return x;
}

int big_callc2(int C[],int i)
{
 return C[i];
}

Synchronization:
Lock routines
Simple Lock routines: A simple lock is available if it is unset.– omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(), omp_destroy_lock()

67

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Nested Locks: A nested lock is available if it is unset or if it is set but owned by the thread executing
the nested lock function– omp_init_nest_lock(), omp_set_nest_lock(), omp_unset_nest_lock(),
omp_test_nest_lock(), omp_destroy_nest_lock()
Note:
1. a thread always accesses the most recent copy of the lock, so you don’t need to use a flush on the
lock variable.
2. A lock implies a memory fence (a “flush”) of all thread visible variables.

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);//Wait here for your turn
printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);//Wait here for your turn

}
 omp_destroy_lock(&lck); //Free-up storage when done

68

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Experiment No:10
AIM: Experiment with Message Passing Interface Standard (MPI).

MPI is a library of routines that can be used to create parallel programs in C or Fortran77. Standard C
and Fortran include no constructs supporting parallelism so vendors have developed a variety of
extensions to allow users of those languages to build parallel applications. The result has been a spate
of non-portable applications, and a need to retrain programmers for each platform upon which they
work.
The MPI standard was developed to ameliorate these problems. It is a library that runs with standard C
or Fortran programs, using commonly-available operating system services to create parallel processes
and exchange information among these processes.

MPI is designed to allow users to create programs that can run efficiently on most parallel
architectures. The design process included vendors (such as IBM, Intel, TMC, Cray, Convex, etc.),
parallel library authors (involved in the development of PVM, Linda, etc.), and applications specialists.
The final version for the draft standard became available in May of 1994.

MPI can also support distributed program execution on heterogenous hardware. That is, you may run a
program that starts processes on multiple computer systems to work on the same problem. This is
useful with a workstation farm.

Here is the basic Hello world program in C using MPI:
 #include <stdio.h>
 #include <mpi.h>

 main(int argc, char **argv)
 {
 int ierr;

 ierr = MPI_Init(&argc, &argv);
 printf("Hello world\n");

 ierr = MPI_Finalize();
 }

If you compile hello.c with a command like

mpicc 1.c -o 1

69

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

you will create an executable file called hello, which you can execute by using the mpirun command

as in the following session segment:

mpirun -np 4 -hosts localhost ./1

When the program starts, it consists of only one process, sometimes called the "parent", "root", or
"master" process. When the routine MPI_Init executes within the root process, it causes the creation of
3 additional processes (to reach the number of processes (np) specified on the mpirun command line),

sometimes called "child" processes.

Each of the processes then continues executing separate versions of the hello world program. The next
statement in every program is the printf statement, and each process prints "Hello world" as directed.
Since terminal output from every program will be directed to the same terminal, we see four lines
saying "Hello world".

Identifying the separate processes
As written, we cannot tell which "Hello world" line was printed by which process. To identify a process
we need some sort of process ID and a routine that lets a process find its own process ID. MPI assigns
an integer to each process beginning with 0 for the parent process and incrementing each time a new
process is created. A process ID is also called its "rank".

MPI also provides routines that let the process determine its process ID, as well as the number of
processes that are have been created.

Here is an enhanced version of the Hello world program that identifies the process that writes each line
of output:

70

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

#include <stdio.h>
#include <mpi.h>
int main(int argc, char **argv)
{
 int ierr, num_procs, my_id;
 ierr = MPI_Init(&argc, &argv);
 /* find out MY process ID, and how many processes were started. */
 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
 ierr = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
 printf("Hello world! I'm process %i out of %i processes\n",my_id, num_procs);
 ierr = MPI_Finalize();
 return 0;
}

When we run this program, each process identifies itself:

$ mpicc 2.c -o 2

$ mpirun -np 4 -hosts localhost ./2

Hello world! I'm process 0 out of 4 processes.

Hello world! I'm process 2 out of 4 processes.
Hello world! I'm process 1 out of 4 processes.
Hello world! I'm process 3 out of 4 processes.
$

Note that the process numbers are not printed in ascending order. That is because the processes
execute independently and execution order was not controlled in any way. The programs may
print their results in different orders each time they are run.

(To find out which Origin processors and memories are used to run a program you can turn on the
MPI_DSM_VERBOSE environment variable with "export MPI_DSM_VERBOSE=ON", or
equivalent.)

To let each process perform a different task, you can use a program structure like:

 #include <mpi.h>

 int main(int argc, char **argv)
 {
 int my_id, root_process, ierr, num_procs;
 MPI_Status status;

 /* Create child processes, each of which has its own variables.

71

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 * From this point on, every process executes a separate copy
 * of this program. Each process has a different process ID,
 * ranging from 0 to num_procs minus 1, and COPIES of all
 * variables defined in the program. No variables are shared.
 **/

 ierr = MPI_Init(&argc, &argv);

 /* find out MY process ID, and how many processes were started. */

 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
 ierr = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 if(my_id == 0) {

 /* do some work as process 0 */
 }
 else if(my_id == 1) {

 /* do some work as process 1 */
 }
 else if(my_id == 2) {

 /* do some work as process 2 */
 }
 else {

 /* do this work in any remaining processes */
 }
 /* Stop this process */

 ierr = MPI_Finalize();
return 0;

 }

Basic MPI communication routines

It is important to realize that separate processes share no memory variables. They appear to be using
the same variables, but they are really using COPIES of any variable defined in the program.

As a result, these programs cannot communicate with each other by exchanging information in memory
variables. Instead they may use any of a large number of MPI communication routines. The two basic
routines are:

• MPI_Send, to send a message to another process, and

72

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

• MPI_Recv, to receive a message from another process.

The syntax of MPI_Send is:

int MPI_Send(void *data_to_send, int send_count, MPI_Datatype send_type,
 int destination_ID, int tag, MPI_Comm comm);

• data_to_send: variable of a C type that corresponds to the send_type supplied below

• send_count: number of data elements to be sent (nonnegative int)

• send_type: datatype of the data to be sent (one of the MPI datatype handles)

• destination_ID: process ID of destination (int)

• tag: message tag (int)

• comm: communicator (handle)

Once a program calls MPI_Send, it blocks until the data transfer has taken place and the
data_to_send variable can be safely reused. As a result, these routines provide a simple

synchronization service along with data exchange.

The syntax of MPI_Recv is:

int MPI_Recv(void *received_data, int receive_count, MPI_Datatype receive_type,
 int sender_ID, int tag, MPI_Comm comm, MPI_Status *status);

• received_data: variable of a C type that corresponds to the receive_type supplied

below
• receive_count: number of data elements expected (int)

• receive_type: datatype of the data to be received (one of the MPI datatype handles)

• sender_ID: process ID of the sending process (int)

• tag: message tag (int)

• comm: communicator (handle)

• status: status struct (MPI_Status)

The receive_count, sender_ID, and tag values may be specified so as to allow messages of

unknown length, from several sources (MPI_ANY_SOURCE), or with various tag values
(MPI_ANY_TAG).

The amount of information actually received can then be retrieved from the status variable, as with:

count MPI_Get_count(&status, MPI_FLOAT, &true_received_count);

73

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

received_source = status.MPI_SOURCE;
received_tag = status.MPI_TAG;

MPI_Recv blocks until the data transfer is complete and the received_data variable is available

for use.

The basic datatypes recognized by MPI are:

MPI datatype handle C datatype

MPI_INT int

MPI_SHORT short

MPI_LONG long

MPI_FLOAT float

MPI_DOUBLE double

MPI_CHAR char

MPI_BYTE unsigned char

MPI_PACKED

There also exist other types like: MPI_UNSIGNED, MPI_UNSIGNED_LONG, and
MPI_LONG_DOUBLE.

A common pattern of process interaction
A common pattern of interaction among parallel processes is for one, the master, to allocate work to a
set of slave processes and collect results from the slaves to synthesize a final result.

The master process will execute program statements like:

 /* distribute portions of array1 to slaves. */

 for(an_id = 1; an_id < num_procs; an_id++) {

 start_row = an_id*num_rows_per_process;

 ierr = MPI_Send(&num_rows_to_send, 1, MPI_INT,
 an_id, send_data_tag, MPI_COMM_WORLD);

 ierr = MPI_Send(&array1[start_row], num_rows_per_process,

74

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 MPI_FLOAT, an_id, send_data_tag, MPI_COMM_WORLD);
 }

 /* and, then collect the results from the slave processes,
 * here in a variable called array2, and do something with them. */

 for(an_id = 1 an_id < num_procs; an_id++) {

 ierr = MPI_Recv(&array2, num_rows_returned, MPI_FLOAT,
 MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 /* do something with array2 here */

 }

 /* and then print out some final result using the
 * information collected from the slaves. */

In this fragment, the master program sends a contiguous portion of array1 to each slave using
MPI_Send and then receives a response from each slave via MPI_Recv. In practice, the master does not
have to send an array; it could send a scalar or some other MPI data type, and it could construct array1
from any components to which it has access.

Here the returned information is put in array2, which will be written over every time a different
message is received. Therefore, it will probably be copied to some other variable within the receiving
loop.

Note the use of the MPI constant MPI_ANY_SOURCE to allow this MPI_Recv call to receive
messages from any process. In some cases, a program would need to determine exactly which process
sent a message received using MPI_ANY_SOURCE. status.MPI_SOURCE will hold that information,
immediately following the call to MPI_Recv.

The slave program to work with this master would resemble:

 /* Receive an array segment, here called array2 */.

 ierr = MPI_Recv(&num_rows_to_receive, 1 , MPI_INT,
 root_process, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 ierr = MPI_Recv(&array2, num_rows_to_receive, MPI_FLOAT,
 root_process, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 /* Do something with array2 here, placing the result in array3,
 * and send array3 to the root process. */

75

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 ierr = MPI_Send(&array3, num_rows_to_return, MPI_FLOAT,
 root_process, return_data_tag, MPI_COMM_WORLD);

There could be many slave programs running at the same time. Each one would receive data in array2
from the master via MPI_Recv and work on its own copy of that data. Each slave would construct its
own copy of array3, which it would then send to the master using MPI_Send.

A non-parallel program that sums the values in an array
The following program calculates the sum of the elements of a array. It will be followed by a parallel
version of the same program using MPI calls.

 #include <stdio.h>
 #define max_rows 10000000

 int array[max_rows];

 int main(int argc, char **argv)
 {
 int i, num_rows;
 long int sum;

 printf("please enter the number of numbers to sum: ");
 scanf("%i", &num_rows);

 if(num_rows > max_rows) {
 printf("Too many numbers.\n");
 exit(1);
 }

 /* initialize an array */

 for(i = 0; i < num_rows; i++) {
 array[i] = i;
 }

 /* compute sum */

 sum = 0;
 for(i = 0; i < num_rows; i++) {
 sum += array[i];
 }

 printf("The grand total is: %i\n", sum);

76

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

return 0;

 }

Design for a parallel program to sum an array
The code below shows a common Fortran structure for including both master and slave segments in the
parallel version of the example program just presented. It is composed of a short set-up section
followed by a single if...else loop where the master process executes the statments between the

brackets after the if statement, and the slave processes execute the statements between the brackets

after the else statement.

 /* This program sums all rows in an array using MPI parallelism.
 * The root process acts as a master and sends a portion of the
 * array to each child process. Master and child processes then
 * all calculate a partial sum of the portion of the array assigned
 * to them, and the child processes send their partial sums to
 * the master, who calculates a grand total.
 **/

 #include <stdio.h>
 #include <mpi.h>
 int main()
 {
 int my_id, root_process, ierr, num_procs, an_id;
 MPI_Status status;

 root_process = 0;

 /* Now replicate this process to create parallel processes.

 ierr = MPI_Init(&argc, &argv);

 /* find out MY process ID, and how many processes were started */

 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
 ierr = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 if(my_id == root_process) {
 /* I must be the root process, so I will query the user
 * to determine how many numbers to sum.

 * initialize an array,

77

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 * distribute a portion of the array to each child process,

 * and calculate the sum of the values in the segment assigned
 * to the root process,

 * and, finally, I collect the partial sums from slave processes,
 * print them, and add them to the grand sum, and print it */
 }

 else {

 /* I must be slave process, so I must receive my array segment,

 * calculate the sum of my portion of the array,

 * and, finally, send my portion of the sum to the root process. */

 }

 /* Stop this process */

 ierr = MPI_Finalize();
return 0;

}

The complete parallel program to sum a array
Here is the expanded parallel version of the same program using MPI calls.

 /* This program sums all rows in an array using MPI parallelism.
 * The root process acts as a master and sends a portion of the
 * array to each child process. Master and child processes then
 * all calculate a partial sum of the portion of the array assigned
 * to them, and the child processes send their partial sums to
 * the master, who calculates a grand total.
 **/

 #include <stdio.h>
 #include <mpi.h>

 #define max_rows 100000
 #define send_data_tag 2001
 #define return_data_tag 2002

 int array[max_rows];
 int array2[max_rows];

78

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 int main(int argc, char **argv)
 {
 long int sum, partial_sum;
 MPI_Status status;
 int my_id, root_process, ierr, i, num_rows, num_procs,
 an_id, num_rows_to_receive, avg_rows_per_process,
 sender, num_rows_received, start_row, end_row, num_rows_to_send;

 /* Now replicte this process to create parallel processes.
 * From this point on, every process executes a seperate copy
 * of this program */

 ierr = MPI_Init(&argc, &argv);

 root_process = 0;

 /* find out MY process ID, and how many processes were started. */

 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
 ierr = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 if(my_id == root_process) {

 /* I must be the root process, so I will query the user
 * to determine how many numbers to sum. */

 printf("please enter the number of numbers to sum: ");
 scanf("%i", &num_rows);

 if(num_rows > max_rows) {
 printf("Too many numbers.\n");
 exit(1);
 }

 avg_rows_per_process = num_rows / num_procs;

 /* initialize an array */

 for(i = 0; i < num_rows; i++) {
 array[i] = i + 1;
 }

 /* distribute a portion of the bector to each child process */

 for(an_id = 1; an_id < num_procs; an_id++) {
 start_row = an_id*avg_rows_per_process + 1;

79

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 end_row = (an_id + 1)*avg_rows_per_process;

 if((num_rows - end_row) < avg_rows_per_process)
 end_row = num_rows - 1;

 num_rows_to_send = end_row - start_row + 1;

 ierr = MPI_Send(&num_rows_to_send, 1 , MPI_INT,
 an_id, send_data_tag, MPI_COMM_WORLD);

 ierr = MPI_Send(&array[start_row], num_rows_to_send, MPI_INT,
 an_id, send_data_tag, MPI_COMM_WORLD);
 }

 /* and calculate the sum of the values in the segment assigned
 * to the root process */

 sum = 0;
 for(i = 0; i < avg_rows_per_process + 1; i++) {
 sum += array[i];
 }

 printf("sum %i calculated by root process\n", sum);

 /* and, finally, I collet the partial sums from the slave processes,
 * print them, and add them to the grand sum, and print it */

 for(an_id = 1; an_id < num_procs; an_id++) {

 ierr = MPI_Recv(&partial_sum, 1, MPI_LONG, MPI_ANY_SOURCE,
 return_data_tag, MPI_COMM_WORLD, &status);

 sender = status.MPI_SOURCE;

 printf("Partial sum %i returned from process %i\n", partial_sum,
sender);

 sum += partial_sum;
 }

 printf("The grand total is: %i\n", sum);
 }

 else {

 /* I must be a slave process, so I must receive my array segment,
 * storing it in a "local" array, array1. */

80

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 ierr = MPI_Recv(&num_rows_to_receive, 1, MPI_INT,
 root_process, send_data_tag, MPI_COMM_WORLD, &status);

 ierr = MPI_Recv(&array2, num_rows_to_receive, MPI_INT,
 root_process, send_data_tag, MPI_COMM_WORLD, &status);

 num_rows_received = num_rows_to_receive;

 /* Calculate the sum of my portion of the array */

 partial_sum = 0;
 for(i = 0; i < num_rows_received; i++) {
 partial_sum += array2[i];
 }

 /* and finally, send my partial sum to hte root process */

 ierr = MPI_Send(&partial_sum, 1, MPI_LONG, root_process,
 return_data_tag, MPI_COMM_WORLD);
 }
 ierr = MPI_Finalize();

return 0;
 }

The following table shows the values of several variables during the execution of sumarray_mpi. The
information comes from a two-processor parallel run, and the values of program variables are shown in
both processor memory spaces. Note that there is only one process active prior to the call to MPI_Init.

Value histories of selected variables
within the master and slave processes

during a 2-process execution of program sumarray_mpi

Program
location

Before
MPI_Init

After
MPI_Init

Before
MPI_Send

to slave

After
MPI_Recv

by slave

After MPI_Recv
by master

Variable
Name

Proc 0 Proc 0 Proc 1 Proc 0 Proc 1 Proc 0 Proc 1 Proc 0 Proc 1

root_process 0 0 0 0 0 0 0 0 0

my_id . 0 1 0 1 0 1 0 1

num_procs . 2 2 2 2 2 2 2 2

num_rows . . . 6 . 6 . 6 .

81

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

avg_rows_
per_process

. . . 3 . 3 . 3 .

num_rows_
received

. 3 . 3

array[0] . . . 1.0 . 1.0 . 1.0 .

array[1] . . . 2.0 . 2.0 . 2.0 .

array[2] . . . 3.0 . 3.0 . 3.0 .

array[3] . . . 4.0 . 4.0 . 4.0 .

array[4] . . . 5.0 . 5.0 . 5.0 .

array[5] . . . 6.0 . 6.0 . 6.0 .

array2[0] 4.0 . 4.0

array2[1] 5.0 . 5.0

array2[2] 6.0 . 6.0

array2[3]

array2[4]

array2[5]

partial_sum 6.0 15.0

sum 21.0 .

Logging and tracing MPI activity
It is possible to use mpirun to record MPI activity, by using the options -mpilog and -mpitrace.

For more information about this facility see man mpirun.

Collective operations
MPI_Send and MPI_Recv are "point-to-point" communications functions. That is, they involve one
sender and one receiver. MPI includes a large number of subroutines for performing "collective"
operations. Collective operation are performed by MPI routines that are called by each member of a
group of processes that want some operation to be performed for them as a group. A collective function
may specify one-to-many, many-to-one, or many-to-many message transmission.

MPI supports three classes of collective operations:

• synchronization,

82

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

• data movement, and
• collective computation

These classes are not mutually exclusive, of course, since blocking data movement functions also serve
to synchronize process activity, and some MPI routines perform both data movement and computation.

Synchronization
The MPI_Barrier function can be used to synchronize a group of processes. To synchronize a group of
processes, each one must call MPI_Barrier when it has reached a point where it can go no further until
it knows that all its cohorts have reached the same point. Once a process has called MPI_Barrier, it will
be blocked until all processes in the group have also called MPI_Barrier.

Collective data movement
There are several routines for performing collective data distribution tasks:

MPI_Bcast
Broadcast data to other processes

MPI_Gather, MPI_Gatherv
Gather data from participating processes into a single structure

MPI_Scatter, MPI_Scatter
Break a structure into portions and distribute those portions to other processes

MPI_Allgather, MPI_Allgatherv
Gather data from different processes into a single structure that is then sent to all participants
(Gather-to-all)

MPI_Alltoall, MPI_Alltoallv
Gather data and then scatter it to all participants (All-to-all scatter/gather)

The routines with "V" suffixes move variable-sized blocks of data.

The subroutine MPI_Bcast sends a message from one process to all processes in a communicator.

int MPI_Bcast(void *data_to_be_sent, int send_count, MPI_Datatype send_type,
 int broadcasting_process_ID, MPI_Comm comm);

When processes are ready to share information with other processes as part of a broadcast, ALL of
them must execute a call to MPI_BCAST. There is no separate MPI call to receive a broadcast.

83

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

MPI_Bcast could have been used in the program sumarray_mpi presented earlier, in place of the
MPI_Send loop that distributed data to each process. Doing so would have resulted in excessive data
movement, of course. A better solution would be MPI_Scatter or MPI_Scatterv.

The subroutines MPI_Scatter and MPI_Scatterv take an input array, break the input data into separate
portions and send a portion to each one of the processes in a communicating group.

int MPI_Scatter(void *send_data, int send_count, MPI_Datatype send_type,
 void *receive_data, int receive_count, MPI_Datatype receive_type,
 int sending_process_ID, MPI_Comm comm);
or

int MPI_Scatterv(void *send_data, int *send_count_array, int *send_start_array,
 MPI_Datatype send_type, void *receive_data, int receive_count,
 MPI_Datatype receive_type, int sender_process_ID, MPI_Comm comm);

• data_to_send: variable of a C type that corresponds to the MPI send_type supplied

below
• send_count: number of data elements to send (int)

• send_count_array: array with an entry for each participating process containing the

number of data elements to send to that process (int)
• send_start_array: array with an entry for each participating process containing the

displacement relative to the start of data_to_send for each data segment to send (int)

• send_type: datatype of elements to send (one of the MPI datatype handles)

• receive_data: variable of a C type that corresponds to the MPI receive_type supplied

below
• receive_count: number of data elements to receive (int)

• receive_type: datatype of elements to receive (one of the MPI datatype handles)

• sender_ID: process ID of the sender (int)

• receive_tag: receive tag (int)

• comm: communicator (handle)

• status: status object (MPI_Status)

The routine MPI_Scatterv could have been used in the program sumarray_mpi presented earlier, in
place of the MPI_Send loop that distributed data to each process.

84

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

MPI_Bcast, MPI_Scatter, and other collective routines build a communication tree among the
participating processes to minimize message traffic. If there are N processes involved, there would
normally be N-1 transmissions during a broadcast operation, but if a tree is built so that the
broadcasting process sends the broadcast to 2 processes, and they each send it on to 2 other processes,
the total number of messages transferred is only O(ln N).

Collective computation routines
Collective computation is similar to collective data movement with the additional feature that data may
be modified as it is moved. The following routines can be used for collective computation.

MPI_Reduce
Perform a reduction operation. That is, apply some operation to some operand in every
participating process. For example, add an integer residing in every process together and put the
result in a process specified in the MPI_Reduce argument list.

MPI_Allreduce
Perform a reduction leaving the result in all participating processes

MPI_Reduce_scatter
Perform a reduction and then scatter the result

MPI_Scan
Perform a reduction leaving partial results (computed up to the point of a process's involvement
in the reduction tree traversal) in each participating process. (parallel prefix)

The subroutine MPI_Reduce combines data from all processes in a communicator using one of several
reduction operations to produce a single result that appears in a specified target process.

int MPI_Reduce(void *data_to_be_sent, void *result_to_be_received_by_target,
 int send_count, MPI_Datatype send_type, MPI_Op operation,
 int target_process_ID, MPI_Comm comm);

When processes are ready to share information with other processes as part of a data reduction, all of
the participating processes execute a call to MPI_Reduce, which uses local data to calculate each
process's portion of the reduction operation and communicates the local result to other processes as
necessary. Only the target_process_ID receives the final result.

MPI_Reduce could have been used in the program sumarray_mpi presented earlier, in place of the
MPI_Recv loop that collected partial sums from each process.

85

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

Collective computation built-in operations
Many of the MPI collective computation routines take both built-in and user-defined combination
functions. The built-in functions are:

Operation handle Operation

MPI_MAX Maximum

MPI_MIN Minimum

MPI_PROD Product

MPI_SUM Sum

MPI_LAND Logical AND

MPI_LOR Logical OR

MPI_LXOR Logical Exclusive OR

MPI_BAND Bitwise AND

MPI_BOR Bitwise OR

MPI_BXOR Bitwise Exclusive OR

MPI_MAXLOC Maximum value and location

MPI_MINLOC Minimum value and location

A collective operation example
The following program integrates the function sin(X) over the range 0 to 2 pi. It will be followed by a
parallel version of the same program that uses the MPI library.

 /* program to integrate sin(x) between 0 and pi by computing
 * the area of a number of rectangles chosen so as to approximate
 * the shape under the curve of the function.
 *
 * 1) ask the user to choose the number of intervals,
 * 2) compute the interval width (rect_width),
 * 3) for each interval:
 *
 * a) find the middle of the interval (x_middle),
 * b) compute the height of the rectangle, sin(x_middle),
 * c) find the area of the rectangle as the product of
 * the interval width and its height sin(x_middle), and
 * d) increment a running total.
 **/

 #include <stdio.h>

86

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 #include <math.h>

 #define PI 3.1415926535

 int main(int argc, char **argv)
 {
 int i, num_intervals;
 double rect_width, area, sum, x_middle;

 printf("Please enter the number of intervals to interpolate: ");
 scanf("%i", &num_intervals);

 rect_width = PI / num_intervals;

 sum = 0;
 for(i = 1; i < num_intervals + 1; i++) {

 /* find the middle of the interval on the X-axis. */

 x_middle = (i - 0.5) * rect_width;
 area = sin(x_middle) * rect_width;
 sum = sum + area;
 }

 printf("The total area is: %f\n", (float)sum);
return 0;

 }

The next program is an MPI version of the program above. It uses MPI_Bcast to send information to
each participating process and MPI_Reduce to get a grand total of the areas computed by each
participating process.

 /* This program integrates sin(x) between 0 and pi by computing
 * the area of a number of rectangles chosen so as to approximate
 * the shape under the curve of the function using MPI.
 *
 * The root process acts as a master to a group of child process
 * that act as slaves. The master prompts for the number of
 * interpolations and broadcasts that value to each slave.
 *
 * There are num_procs processes all together, and a process
 * computes the area defined by every num_procs-th interval,
 * collects a partial sum of those areas, and sends its partial
 * sum to the root process.
 **/

87

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 #include <stdio.h>
 #include <math.h>
 #include <mpi.h>

 #define PI 3.1415926535

 int main(int argc, char **argv)
 {
 int my_id, root_process, num_procs, ierr, num_intervals, i;
 double rect_width, area, sum, x_middle, partial_sum;
 MPI_Status status;

 /* Let process 0 be the root process. */

 root_process = 0;

 /* Now replicate this process to create parallel processes. */

 ierr = MPI_Init(&argc, &argv);

 /* Find out MY process ID, and how many processes were started. */

 ierr = MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
 ierr = MPI_Comm_size(MPI_COMM_WORLD, &num_procs);

 if(my_id == root_process) {

 /* I must be the root process, so I will query the user
 to determine how many interpolation intervals to use. */

 printf("Please enter the number of intervals to interpolate: ");
 scanf("%i", &num_intervals);
 }

 /* Then...no matter which process I am:
 *
 * I engage in a broadcast so that the number of intervals is
 * sent from the root process to the other processes, and ...
 **/
 ierr = MPI_Bcast(&num_intervals, 1, MPI_INT, root_process,
 MPI_COMM_WORLD);

 /* calculate the width of a rectangle, and */

 rect_width = PI / num_intervals;

 /* then calculate the sum of the areas of the rectangles for

88

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 * which I am responsible. Start with the (my_id +1)th
 * interval and process every num_procs-th interval thereafter.
 **/
 partial_sum = 0;
 for(i = my_id + 1; i <num_intervals + 1; i += num_procs) {

 /* Find the middle of the interval on the X-axis. */
 x_middle = (i - 0.5) * rect_width;
 area = sin(x_middle) * rect_width;
 partial_sum = partial_sum + area;
 }
 printf("proc %i computes: %f\n", my_id, (float)partial_sum);

 /* and finally, engage in a reduction in which all partial sums
 * are combined, and the grand sum appears in variable "sum" in
 * the root process,
 **/
 ierr = MPI_Reduce(&partial_sum, &sum, 1, MPI_DOUBLE,
 MPI_SUM, root_process, MPI_COMM_WORLD);

 /* and, if I am the root process, print the result. */

 if(my_id == root_process) {
 printf("The integral is %f\n", (float)sum);

 /* (yes, we could have summed just the heights, and
 * postponed the multiplication by rect_width til now.) */
 }

 /* Close down this processes. */

 ierr = MPI_Finalize();
return 0;

 }

Simultaneous send and receive
The subroutine MPI_Sendrecv exchanges messages with another process. A send-receive operation is
useful for avoiding some kinds of unsafe interaction patterns and for implementing remote procedure
calls.

A message sent by a send-receive operation can be received by MPI_Recv and a send-receive operation
can receive a message sent by an MPI_Send.

MPI_Sendrecv(&data_to_send, send_count, send_type, destination_ID, send_tag,

89

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

 &received_data, receive_count, receive_type, sender_ID, receive_tag,
 comm, &status)

• data_to_send: variable of a C type that corresponds to the MPI send_type supplied

below
• send_count: number of data elements to send (int)

• send_type: datatype of elements to send (one of the MPI datatype handles)

• destination_ID: process ID of the destination (int)

• send_tag: send tag (int)

• received_data: variable of a C type that corresponds to the MPI receive_type

supplied below
• receive_count: number of data elements to receive (int)

• receive_type: datatype of elements to receive (one of the MPI datatype handles)

• sender_ID: process ID of the sender (int)

• receive_tag: receive tag (int)

• comm: communicator (handle)

• status: status object (MPI_Status)

MPI tags
MPI_Send and MPI_Recv, as well as other MPI routines, allow the user to specify a tag value with
each transmission. These tag values may be used to specify the message type, or "context," in a
situation where a program may receive messages of several types during the same program. The
receiver simply checks the tag value to decide what kind of message it has received.

MPI communicators
Every MPI communication operation involves a "communicator." Communicators identify the group of
processes involved in a communication operation and/or the context in which it occurs. The source and
destination processes specified in point-to-point routines like MPI_Send and MPI_Recv must be
members of the specified communicator and the two calls must reference the same communicator.

Collective operations include just those processes identified by the communicator specified in the calls.

90

Jorhat Engineering College
Department of Computer Science and Engineering

Jorhat 785007

The communicator MPI_COMM_WORLD is defined by default for all MPI runs, and includes all
processes defined by MPI_Init during that run. Additional communicators can be defined that include
all or part of those processes. For example, suppose a group of processes needs to engage in two
different reductions involving disjoint sets of processes. A communicator can be defined for each
subset of MPI_COMM_WORLD and specified in the two reduction calls to manage message
transmission.

MPI_Comm_split can be used to create a new communicator composed of a subset of another
communicator. MPI_Comm_dup can be used to create a new communicator composed of all of the
members of another communicator. This may be useful for managing interactions within a set of
processes in place of message tags.

Exercises
Here are some exercises for continuing your investigation of MPI:

• Convert the hello world program to print its messages in rank order.
• Convert the example program sumarray_mpi to use MPI_Scatter and/or MPI_Reduce.
• Write a program to find all positive primes up to some maximum value, using MPI_Recv to

receive requests for integers to test. The master will loop from 2 to the maximum value on
1. issue MPI_Recv and wait for a message from any slave (MPI_ANY_SOURCE),
2. if the message is zero, the process is just starting,

if the message is negative, it is a non-prime,
if the message is positive, it is a prime.

3. use MPI_Send to send a number to test.
and each slave will send a request for a number to the master, receive an integer to test, test it,
and return that integer if it is prime, but its negative value if it is not prime.

• Write a program to send a token from processor to processor in a loop.

91

	C++ (omniORB)
	Interface Implementation
	Server
	Client
	Build
	Interface Implementation
	Server
	Client
	Build
	Execute

	Identifying the separate processes
	Basic MPI communication routines
	A common pattern of process interaction
	A non-parallel program that sums the values in an array
	Design for a parallel program to sum an array
	The complete parallel program to sum a array
	Logging and tracing MPI activity
	Collective operations
	Synchronization
	Collective data movement
	Collective computation routines
	Collective computation built-in operations
	A collective operation example
	Simultaneous send and receive
	MPI tags
	MPI communicators
	Exercises

