T	\mathbf{E}	1	Q	1	1	N	3
-		1	O	1	4	v	v

			10.	T		
Roll No. of candidate	1	وملوا ي	7		 	

2023

B.Tech. 4th Semester End-Term Examination

ELECTRICAL MACHINE - II

New Regulation (w.e.f. 2017-18) & New Syllabus (w.e.f. 2018-19)

Evil	Marks	-70
THEFT	MALKS	- 10

Time - Three hours

The figures in the margin indicate full marks for the questions.

100				• 137
		Answer Question No. 1 and	d any four from the rest.	
1.	Ans	wer the following (MCQ/ Fill in the	blanks questions):	$(10 \times 1 = 10)$
	(a)	The stator of a 3-phase induction field	motor produces ————————————————————————————————————	— magnetic
		(i) steady (iii) alternating	(iv) none of the above	1 - 6+ha motor
	(b)	A $3-\phi$, $5Hz$, 4 pole induction m is	otor has slip of 4%. The speed	1 of the motor
0.47	東京	(i) 1500 rpm (iii) 1440 rpm	(ii) 1450 rpm (iv) 1400 rpm	
	(c)	(iii) 1440 rpm The condition of induction m transformer whose secondary is	otor at standstill resemble	e those of a
,		(i) short circuited (iii) remains unchanged	(ii) open circuited(iv) none of the above	
	(d)	The purpose of starting winding	in a single phase induction m	otor is to
,		(i) reduce losses (ii) limit temperature rise of the	e machine	
		(iii) produce rotating flux in contains (iv) none of the above	junction with main winding	

[Turn ov

	(e)	The field winding of an alternator is excited
		(ii) d.c. (iii) both a.c and d.c (iv) none of the above
	(f)	The disadvantage of a short-pitched coil is that (i) harmonics are introduced (ii) waveform becomes non-sinusoidal
		(iii) voltage round the coil is reduced (iv) none of the above
	(g)	The slip test on an alternator is performed to determine
	(h)	
		(i) shaded-pole motor (ii) capacitor start motor
	(i)	(iii) split-phase motor (iv) a.c. series motor The speed of a synchronous motor can be changed by varying
	(1)	(i) mechanical load (ii) field excitation
		(iii) supply frequency (iv) none of the above
	(j)	An under-excited synchronous motor behaves as
	.,1	(i) an inductor (ii) a capacitor
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(iii) a resistor (iv) none of the above
2.	(a) (b)	What do you mean by synchronous speed of a 3-phase induction motor? Derive an expression for it. Why is the rotor speed of a 3-phase induction motor is always less than synchronous speed for all practical application? $(2+3+3=8)$ A 3-phase induction motor having a 6 pole, star- connected stator winding runs on 240 V, 50 Hz supply. The rotor resistance and standstill rotor reactance are 0.12Ω and 0.85Ω per phase respectively. The ratio of stator
		to rotor turns is 1.8 and full-load slip is 4%. Calculate the developed torque at full-load, maximum torque and speed at maximum torque. (7)
3.	(a)	For a 3-phase induction motor develop an expression to show that $ \frac{Rotar\ Cu\ los}{s} = \frac{s}{s} $ (5)
		$\frac{Rotar\ Cu\ los}{Gross\ rotor\ output} = \frac{s}{1-s}.$
		A 6-pole, 50 Hz, 3-phase induction motor runs at 960 r.p.m. when the torque on the shaft is 200 N-m. If the stator losses are 1500 W and friction and windage losses are 500 W, find (i) rotor Cu loss and (ii) efficiency of the motor.

	(c)	Draw the equivalent circuit of a 3-phase induction motor referred to stator and write expressions for rotor input power and total mechanical power developed. (4)
4.	(a)	What happens when the centrifugal starting switch in a 1-phase Induction motor falls to open? (3)
	(b)	Explain the principle of operation of a shaded-pole motor. (4)
	(c)	At starting the windings of a 230V, 50 Hz, split-phase induction motor have the following
		Parameters:
		Main winding: $R=4\Omega$; $X_L=7.5\Omega$ and starting winding: $R=7.5\Omega$; $X_L=4\Omega$. Find (i) current I_m in the main winding (ii) current I_s in the starting winding (iii) phase angle between I_s and I_m (iv) line current and (v) power factor of the motor.
5.	(a)	Why do we use hydrogen for cooling large turbo alternators instead of air?(3)
	(b)	What are the advantages of distributed winding in an alternator? (2)
	(c)	What are the effects load power factor on armature reaction in an alternator? (3)
	(d)	A 3-phase, 50 Hz, star connected, 1000 kVA, 2300 V alternator gives a short circuit current of 400 A for a certain field excitation. With the same excitation, the open-circuit voltage was 1328 V (phase value). The d.c, resistance between two lines is 0.412Ω. Find (i) effective armature resistance (ii) synchronous reactance (iii) the full-load voltage regulation at 0.8 p.f. lagging.
6.	(a)	Draw the power angle characteristic of a salient pole alternator and indicate (3) different powers in the characteristic.
	(b)	Derive an expression for synchronising power when two atternations (5)
	(c)	running in parallel. A 3000 kVA, 6-pole alternator runs at 1000 r.p.m. in parallel with other machines on 3300 V busbars. The synchronous reactance is 25%. Calculate the synchronising power for one mechanical degree of displacement and the corresponding synchronising torque. (7)
	17.7	그는 사용하는 것으로 보는 사용되었다. "하는 사용하는 사용하는 사용하는 사용하는 사용하는 것이 없는 것이 되었다. 그 사용하는 것이다. 그 사용하는 것이다.

(c)

- 7. (a) Discuss briefly the operating principle of a synchronous motor. (4)
 - (b) Draw the phasor diagrams for different excitation at constant load in a synchronous motor. (4)
 - (c) A 3980 V, 50 Hz, 4-pole, star-connected synchronous motor generates back e.m.f. of 1790 V per phase. The resistance and synchronous reactance per phase are 2.2 Ω and 22 Ω respectively. The torque angle is 30° electrical Calculate (i) the resultant armature voltage/phase (ii) armature current per phase and (iii) power factor of the motor. (7)
- 8. Write a brief note on any three of the following:

 $(3 \times 5 = 15)$

- (a) V-curve and O-curve of synchronous motor
- (b) Principle of operation and characteristics of reluctance motor
- (c) BLDC motor and its applications
- (d) Concentrated and distributed windings of AC machines
- (e) m.m.f. method of voltage regulation in an alternator
- (f) Star-delta starting method of 3-phase squirrel cage induction motor
- (g) Speed control of 3-phase induction motor by (V/f) control method
- (h) Synchronous condenser.